ƒZƒ~ƒi[ˆÄ“à

“úŽž
8ŒŽ21“ú (…), 13:30-
êŠ
‹ž“s‘åŠw—Šw•” 5†ŠÙ 413
u‰‰ŽÒ
Dr. Pasquale Marra
(Department of Physics, and Research and Education Center for Natural Sciences, Keio University)
ƒ^ƒCƒgƒ‹
"Topological nontrivial Andreev bound states, double dimensionality, and synthetic dimensions"
”õl—“@iƒAƒuƒXƒgƒ‰ƒNƒg“™j

Abstract:
Andreev bound states are low energy excitations appearing below the particle-hole gap of superconductors, and are expected to be topologically trivial. In this seminar, I will report the theoretical prediction of topologically nontrivial Andreev bound states in one-dimensional superconductors. These states correspond to a novel topological invariant defined in a synthetic two-dimensional space, the particle-hole Chern number, which we construct in analogy to the spin Chern number in quantum spin Hall systems. Nontrivial Andreev bound states have distinct features and are topologically nonequivalent to Majorana bound states. Yet, they can coexist in the same system, have similar spectral signatures, and materialize with the concomitant opening of the particle-hole gap. The coexistence of Majorana and nontrivial Andreev bound state is the direct consequence of gdouble dimensionalityh, i.e., the dimensional embedding of the one-dimensional system in a synthetic two-dimensional space, which allow the definition of two distinct topological invariants (Z2 and Z) in different dimensionalities.

Reference:
[1] P. Marra and M. Nitta, arXiv:1907.05416 (2019).