Extreme Universe
A New Paradigm for Spacetime and Matter
from Quantum Information

Fock space localization in

 a perturbed Sachdev-Ye-Kitaev model
22 March 2022

The 17th Japan-Slovenia Seminar on Nonlinear Science (online) Masaki TEZUKA (Kyoto University)

Plan

- Sachdev-Ye-Kitaev model

$$
\hat{H}=\sum_{1 \leq a b c c d a s N} J_{a b c a \hat{x}_{a} \hat{x}_{b} \hat{x}_{c} \hat{x}_{d}}
$$

- Maximally chaotic quantum mechanical model
- SYK4+2
- Quantitative analysis of Fock-space localization
- Many-body transition point
- Spectral statistics, inverse participation ratio
- Ergodicity of the eigenstates

SYK model-related publications and collaborators

- Sachdev-Ye-Kitaev model
- Proposal for experiment: PTEP 2017, 083101 and arXiv:1709.07189
- with Ippei Danshita and Masanori Hanada
- Black Holes and Random Matrices: JHEP 1705(2017)118
- with J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, and A. Streicher
- Scrambling time: JHEP 1807(2018)124 with Hrant Gharibyan, M. Hanada, and S. H. Shenker
- SYK4+2
- Chaotic-integrable transition: PRL 120, 241603 (2018)

Also see our reply [PRL 126, 109102 (2021)] to the

- with Antonio M. García-García, Bruno Loureiro, and Aurelio Romero-Bermúdez
- Characterization of quantum chaos: JHEP 1904(2019)082 and Phys. Rev. E 102, 022213 (2020)
- with Hrant Gharibyan, M. Hanada, and Brian Swingle
- Related setups:
- [short-range interactions] Phys. Rev. B 99, 054202 (2019) with A. M. García-García
- Phys. Lett. B 795, 230 (2019) and J. Phys. A 54, 095401 (2021) with Pak Hang Chris Lau, Chen-Te Ma, and Jeff Murugan
- Quantitative analysis of Fock-space localization in SYK4+2
- Many-body transition point and inverse participation ratio
- Phys. Rev. Research 3, 013023 (2021) with Felipe Monteiro, Tobias Micklitz, and Alexander Altland
- Entanglement entropy
- Phys. Rev. Lett. 127, 030601 (2021) with F. Monteiro, A. Altland, David A. Huse, and T. Micklitz

Recent works not directly related to SYK

- 2112.12467 Universal properties of dissipative Tomonaga-Luttinger liquids: A case study of a non-Hermitian XXZ spin chain
(with Kazuki Yamamoto, Masaya Nakagawa, Masahito Ueda, and Norio Kawakami)
- 2112.08763 Topological Lifshitz Transitions, Orbital Currents, and Interactions in Low-dimensional Fermi Gases in Synthetic Gauge Fields (with Chen-How Huang and Miguel A. Cazalilla) New J. Phys. (2022) in press
- 2111.03857 Ferromagnetism in tilted fermionic Mott insulators (with Kazuaki Takasan)
- 2110.03008 Numerical evidence for a Haagerup conformal field theory (with Tzu-Chen Huang, Ying-Hsuan Lin, Kantaro Ohmori, and Yuji Tachikawa)
- 2012.14609 Local Operator Entanglement in Spin Chains (with Eric Mascot, Masahiro Nozaki)
- Fuyuki Matsuda, Masaki Tezuka, and Norio Kawakami,

Two-Dimensional Thouless Pumping of Ultracold Fermions in Obliquely Introduced Optical Superlattice, J. Phys. Soc. Jpn. 89, 114708 (2020)

Sachdev-Ye-Kitaev model

[Sachdev, PRX (2015)]
[Sachdev and Ye, PRL (1993)]

$$
\widehat{H}=\sum_{1 \leq a<b<c<d \leq N} J_{a b c a} \hat{X}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{X}_{d}
$$

$$
\binom{N}{4} \cong \frac{N^{4}}{24} \text { terms }
$$

$$
\hat{\chi}_{a=1,2, \ldots, N}: N \text { Majorana fermions }\left(\left\{\hat{\chi}_{a}, \hat{\chi}_{b}\right\}=2 \delta_{a b}\right)
$$

$$
J_{a b c d}: \text { independent Gaussian random couplings }\left(\overline{U_{a b c d}}{ }^{2}=J^{2}, \overline{J_{a b c d}}=0\right)
$$

- Solvable in the large- N limit
[Maldacena, Shenker, and Stanford, JHEPO8(2016)106]
- Maximally chaotic ($\lambda_{\text {Lyapunov }} \xrightarrow{\text { low } T} 2 \pi k_{\mathrm{B}} T / \hbar$: chaos bound)
- Correspondence to $1+1 \mathrm{~d}$ gravity, random matrix

One term of the 10-Majorana fermion $\mathrm{SYK}_{q=4}$

Lyapunov exponent and out-of-time-order correlators (OTOC)

$$
F(t)=\left\langle\hat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \hat{W}(t) \hat{V}(0)\right\rangle W(t)=e^{i H t} W e^{-i H t}
$$

Classical chaos:

Infinitesimally different initial coords

Quantum dynamics:

$$
C_{T}(t)=\left\langle[\hat{x}(t), \hat{p}(0)]^{2}\right\rangle
$$

For operators V and W, consider $\left.C(t)=\left.\langle |[W(t), V(t=0)]\right|^{2}\right\rangle=\left\langle W^{\dagger}(t) V^{\dagger}(0) W(t) V(0)\right\rangle+\cdots$ [Wiener 1938][Larkin \& Ovchinnikov 1969]

$$
\text { OTOC } \sim e^{2 \lambda_{\mathrm{L}} t} \text { at long times, } \lambda_{\mathrm{L}}>0 \text { : chaotic }
$$

"Black holes are fastest quantum scramblers"
[P. Hayden and J. Preskill 2007] [Y. Sekino and L. Susskind 2008] [Shenker and Stanford 2014]
$\lambda_{\mathrm{L}} \leq 2 \pi k_{\mathrm{B}} T / \hbar$ (chaos bound)
[J. Maldacena, S. H. Shenker, and D. Stanford, JHEPO8(2016)106]

Out-of-time-ordered correlators (OTOCs)

Regularized OTOC can be calculated for large-N SYK model, satisfies the chaos bound $\lambda_{\mathrm{L}}=2 \pi k_{\mathrm{B}} T / \hbar$ at low T limit
 $\Gamma\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=\Gamma_{0}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)+\int d t_{a} d t_{b} \Gamma\left(t_{1}, t_{2}, t_{a}, t_{b}\right) K\left(t_{a}, t_{b}, t_{3}, t_{4}\right)$

Maximally chaotic systems

S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010), Phys. Rev. X 5, 041025 (2015); J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002 (2016); ...

0+1d SY \&

 SYK modelsJ. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad, S. H. Shenker, D. Stanford, A. Streicher, and MT, JHEP 1705(2017)118; T. Nosaka and T. Numasawa, JHEP 2008(2020)81; Y. Jia and J. J. M. Verbaarschot, JHEP 2007(2020)193; ...

Random matrix
A. Almheiri and J. Polchinski, JHEP 1511(2015)014;
P. Saad, S. H. Shenker, and D. Stanford, arXiv:1903.11115;
D. Stanford and E. Witten, arXiv:1907.03363; ...

Gaussian random matrices

Distribution of normalized

level separation $s_{j}=\frac{e_{j+1}-e_{j}}{\Delta(\bar{e})}$ GOE/GUE/GSE: $P(s) \propto s^{\beta}$
at small s, has $e^{-s^{2}}$ tail

Uncorrelated: $P(s)=e^{-s}$
(Poisson distribution)

Neighboring gap ratio

$$
r=\frac{\min \left(e_{i+1}-e_{i}, \quad e_{i+2}-e_{i+1}\right)}{\max \left(e_{i+1}-e_{i}, \quad e_{i+2}-e_{i+1}\right)}
$$

	Uncorrelated	GOE	GUE	GSE
$\langle r\rangle$	$\begin{aligned} & 2 \log 2-1= \\ & 0.38629 \ldots . \end{aligned}$	$\begin{array}{r} 0.5307(1) \\ \text { [Y. Y. } \end{array}$	$0.5996(1)$ Atas et al.	$\begin{gathered} 0.6744(1) \\ \text { RL 2013] } \end{gathered}$

\rightarrow SYK model: level correlation ($P(s), P(r),\langle r\rangle$, etc.) indistinguishable from corresponding Gaussian ensemble Majorana SYK4 with

$$
\begin{aligned}
& N \equiv 0(\bmod 8): \mathrm{GOE} \\
& N \equiv 2,6(\bmod 8): \mathrm{GUE} \\
& N \equiv 4(\bmod 8): \mathrm{GSE}
\end{aligned}
$$

[Fidkowski and Kitaev PRB 2010, 2011] [You, Ludwig, and Xu PRB 2017]

Eigenvalue spectrum Shenker, D. Stanford, A. Streicher, and MT, JHEP 1705(2017)118

cf. DoS for large N [A. M. García-García and J. J. M. Verbaarschot: PRD 94, 126010 (2016)]

Plan

- Sachdev-Ye-Kitaev model

$$
\hat{H}=\sum_{1 \leq a b c c d a s N} J_{a b c a \hat{x}_{a} \hat{x}_{b} \hat{x}_{c} \hat{x}_{d}}
$$

- Maximally chaotic quantum mechanical model
- SYK4+2
- Departure from chaotic behavior
- Quantitative analysis of Fock-space localization
- Many-body transition point
- Spectral statistics, inverse participation ratio
- Ergodicity of the eigenstates

A. M. García-García, A. Romero-Bermúdez, B. Loureiro,

 and MT, Phys. Rev. Lett. 120, 241603 (2018)

Gaussian random couplings $J_{a b c d}$: average 0 , standard deviation $\frac{\sqrt{6} J}{N^{3 / 2}} \quad J=1$: unit of energy $K_{a b}$: average 0 , standard deviation $\frac{K}{\sqrt{N}}$
SYK_{4} as unperturbed Hamiltonian, K controls the strength of SYK_{2} (one-body random term, solvable)

Here we take (GUE)

$$
N \equiv 2,6(\bmod 8)
$$

Both terms respect charge parity in complex fermion description \rightarrow Full numerical exact diagonalization (ED) of $2^{N / 2-1}$-dimensional matrix, $N \lesssim 34$ possible

Large- N calculation for Out-of-Time Order Correlator (OTOC)

Deviation from the chaos bound as SYK_{2} component is introduced

RMT-like behavior lost as SYK_{2} term is introduced

$P(s)$: level spacing distribution
Ratio of consecutive level spacing $E_{i+1}-E_{i}$ to the local mean level spacing Δ (requires unfolding of the spectrum)
SYK_{4} limit (small K):
Obeys random matrix theory (RMT)
(GUE (Gaussian Unitary Ensemble) if $N \equiv 2,6(\bmod 8)$)
SYK $_{2}($ large $K)$: Poisson $\left(e^{-S}\right)$
$N=30$, Central 10% of eigenvalues
Also see: T. Nosaka, D. Rosa, and J. Yoon, JHEP 1809, 041 (2018) for other symmetry cases
cf. A. V. Lunkin, K. S. Tikhonov, and M. V. Feigel’man, PRL 121, 236601 (2018); Y. Yu-Xiang, F. Sun, J. Ye, and W. M. Liu, 1809.07577, ...

$\mathrm{SYK}_{q \geq 4}+\mathrm{SYK}_{2}:$ breakdown of chaos

$$
\hat{H}=\sum_{1 \leq a<b<c<a}^{N} \underset{J_{a b c a} \hat{x}_{a} \hat{x}_{b} \hat{x}_{c} \hat{x}_{d}+i}{\mathrm{SK}_{1 \leq a<b}} \sum_{a b}^{N} \underset{K_{a} \hat{x}_{a} \hat{x}_{b}}{\mathrm{SYK}_{n}} \quad K_{a b}: \text { standard deviation }=\kappa / \sqrt{N}
$$

Deviation from Gaussian random matrix as SYK_{2} component is introduced

Plan

- Sachdev-Ye-Kitaev model

$$
\hat{H}=\sum_{1 \leq a b c c<d s N} J_{a b c a} \hat{x}_{a} \hat{x}_{b} \hat{x}_{c} \hat{x}_{a}
$$

- Maximally chaotic quantum mechanical model
- SYK4+2

$$
\hat{H}=\sum_{1 \leq a<x<c<d}^{N} J_{a b c c}^{N} \hat{x}_{a} \hat{x}_{b} \hat{x}_{c} \hat{x}_{d}+i \sum_{1 \leq a<\alpha b}^{N} K_{a b} \hat{x}_{\alpha} \hat{x}_{b}
$$

- Quantitative analysis of Fock-space localization
- Many-body transition point
- Spectral statistics, inverse participation ratio
- Ergodicity of the eigenstates

Many-body localization

- Anderson localization: concept in non-interacting systems
- Localization of wavefunctions due to scatterings at impurities
- Many experiments in cold atom gases, optical fibers, etc.
- MBL: does localization occur in interacting systems?
[Gornyi, Mirlin, Polyakov 2005, Basko, Aleiner, Altshuler 2006, Oganesyan and Huse 2007, ... many others]
- Memory of initial conditions remains accessible at long times
- Reduced density matrix on a subsystem does not approach a thermal one
- Energy eigenstates do not obey Eigenstate Thermalization Hypothesis (ETH)
- Area law, rather than volume law, of entanglement entropy
- "Standard model": spin-1/2 Heisenberg model + random field in z direction
- Much debate on the location of the localization transition
- See e.g. Avalanches [Crowley and Chandran PRR 2020] [A. Morningstar et al., 2107.05642]
No localization? [Sels and Polkovnikov PRE 2021]
$\widehat{H}=\sum_{i}^{N} \widehat{S_{i}} \cdot \widehat{S_{i+1}}+\sum_{i}^{N} h_{i} \widehat{S_{i}^{Z}}$
$h_{i} \in[-h, h]$ uniform distribution
F. Monteiro, T. Micklitz, MT, and A. Altland, Phys. Rev. Research 3, 013023 (2021)

Our model and choice of basis

$\mathrm{SYK}_{4}+\delta \mathrm{SYK}_{2}$

$$
\hat{H}=-\sum_{1 \leq a<b<c<d}^{N=2 N \mathrm{D}} J^{\prime}{ }_{a b c a} \hat{\psi}_{a} \hat{\psi}_{b} \hat{\psi}_{c} \hat{\psi}_{d}+i \sum_{1 \leq a<b}^{N} K_{a b} \hat{\psi}_{a} \hat{\psi}_{b}
$$

Block-diagonalize the SYK_{2} part
(the skew-symmetric matrix $\left(K_{a b}\right)$ has eigenvalues $\pm v_{j}$)

$$
\widehat{H}=-\sum_{1 \leq a<b<c<d}^{2 N_{\mathrm{D}}} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}+i \sum_{j=1}^{N_{\mathrm{D}}} v_{j} \hat{\chi}_{2 j-1} \hat{\chi}_{2 j}
$$

Normalization of $J_{a b c d}, v_{j}$: SYK_{4} bandwidth = 1, Width of v_{j} distribution $=\delta$

We choose $\left\{\hat{\psi}_{a}, \hat{\psi}_{b}\right\}=\left\{\hat{\chi}_{a}, \hat{\chi}_{b}\right\}=2 \delta_{a b}$ as the normalization for the $N=2 N_{\mathrm{D}}$ Majorana fermions. For $\hat{c}_{j}=\frac{1}{2}\left(\hat{\chi}_{2 j-1}+\mathrm{i} \hat{\chi}_{2 \mathrm{j}}\right)$ we have $\left\{\hat{c}_{i}, \hat{c}_{j}^{\dagger}\right\}=\delta_{i j}$.
F. Monteiro, T. Micklitz, MT, and A. Altland, Phys. Rev. Research 3, 013023 (2021)

Our model and choice of basis

$$
N=2 N_{\mathrm{D}}=14: 2^{7}=128 \text { states }
$$

Basis diagonalizing the complex fermion number operators $\hat{n}_{j}=\hat{c}_{j}^{\dagger} \hat{c}_{j} \rightarrow$ Sites: the $2^{N_{\mathrm{D}}}$ vertices of an N_{D}-dim. hypercube.

$$
\hat{c}_{j}=\frac{1}{2}\left(\hat{\chi}_{2 j-1}+\mathrm{i} \hat{\chi}_{2 \mathrm{j}}\right)
$$

$$
\begin{aligned}
& \widehat{H}=-\sum_{\substack{1 \leq a<b<c<d}}^{2 N_{\mathrm{D}}} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}+i \sum_{1 \leq j \leq N}^{N_{\mathrm{D}}} v_{j} \hat{\chi}_{2 j-1} \hat{\chi}_{2 j} \\
& =-\sum_{1 \leq a<b<c<d}^{N_{\mathrm{D}}} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}+\sum_{1 \leq j \leq N}^{N_{\mathrm{D}}} v_{j}\left(2 \hat{n}_{j}-1\right)
\end{aligned}
$$

Each term of SYK_{4} connects vertices with distance $=0,2,4$.
For $N=14$, each vertex is directly connected with 1 (distance=0, itself) + 21 (distance=2) + 35 (distance=4) vertices out of the possible $2^{N}=128$ (64 per parity).
F. Monteiro, T. Micklitz, MT, and A. Altland, Phys. Rev. Research 3, 013023 (2021)

Our model and choice of basis

$2^{N_{\mathrm{D}}}$ Fock states
$\mathcal{O}\left(N^{4}\right)$ neighbors

Basis diagonalizing the complex fermion number operators $\hat{n}_{j}=\hat{c}_{j}^{\dagger} \hat{c}_{j} \rightarrow$ Sites: the $2^{N_{\mathrm{D}}}$ vertices of an N_{D}-dim. hypercube.

Each term of SYK_{4} connects vertices with distance $=0,2,4$.

For $N=34$, each vertex is directly connected with 1 (distance=0, itself) +136 (distance= 2$)+2380$ (distance=4) vertices out of the possible $2^{N / 2}=131072$ (65536 per parity).

See T. Micklitz, F. Monteiro, and A. Altland, Phys. Rev. Lett. 123, 125701 (2019).

Picture for Fock space localization

$\hat{H}_{0}=\frac{1}{4!} \sum_{i, j, k, l=1}^{2 N} J_{i j k l} \hat{\chi}_{i} \hat{\chi}_{j} \hat{\chi}_{k} \hat{\chi}_{l}$
$\hat{H}_{V}=\gamma \sum_{n}^{D} v_{n}|n\rangle\langle n|$,

$$
\left.\left.\langle | J_{i j k l}\right|^{2}\right\rangle=\frac{6 J^{2}}{(2 N)^{3}}, \text { hopping amplitude } t=\left|J_{i j k l}\right| \sim J N^{-\frac{3}{2}}
$$

v_{n} : operator diagonal in the occupation number basis

$$
\left|n=\sum_{1 \leq j \leq N} 2^{j-1} n_{j}\right|
$$

Here (on this slide only): drawn from a box distribution of width $\Delta \sim N^{\alpha}$
SYK $_{4}$ bandwidth $\sim J N^{\frac{1}{2}}$ set to unity, $J \sim N^{-\frac{1}{2}}$
Characteristic hopping amplitude by SYK_{4} Hamiltonian: $t \sim J N^{-\frac{3}{2}} \sim N^{-2}$
Hybridization of two nearest neighbors occur for $\frac{\kappa}{\Delta}$ of $\mathcal{O}\left(N^{4}\right)$ neighbors
Number of neighbors
in resonance
Typical level broadening: κ
By Fermi's golden rule, $\kappa \sim|t|^{2} \frac{N^{4} \kappa}{\Delta} / \kappa$.
Broadened energy
$\therefore \kappa \sim \frac{1}{\Delta} \sim N^{-\alpha}$ by self-consistency; $\frac{\kappa}{\Delta} \sim \Delta^{-2} \sim N^{-2 \alpha}$.

Typical \# of resonant neighboring levels: $\frac{N^{4}}{\Delta^{2}} \sim N^{4-2 \alpha}$. If $\alpha>2$, localization (fragmentation of the Fock space) is possible
What happens in the case that v_{n} are given by SYK_{2} eigenvalues?

Four regimes of disorder strengths

Diagnostic quantities: Moments of wave functions and spectral two-point correlation function

- Moments of eigenstate wave functions

$$
\left.I_{q}=\left.v^{-1} \sum_{n, \psi}\langle |\langle\psi \mid n\rangle\right|^{2 q} \delta\left(E_{\psi}\right)\right\rangle_{J}
$$

with average density of states at band center

$$
v=v(E \simeq 0), v(E)=\sum_{\psi}\left\langle\delta\left(E-E_{\psi}\right)\right\rangle_{J}
$$

\rightarrow Parametrizes localization, allows comparison with numerics
$\left.I_{2}=\left.v^{-1} \sum_{n, \psi}\langle |\langle\psi \mid n\rangle\right|^{4} \delta\left(E_{\psi}\right)\right\rangle_{J}:$
inverse participation ratio (IPR), $\frac{1}{D} \leq I_{2} \leq 1$

- Spectral two-point correlation function
$K(\omega)=v^{-2}\left\langle v\left(\frac{\omega}{2}\right) v\left(-\frac{\omega}{2}\right)\right\rangle_{c}$
c: connected part
$\langle A B\rangle_{c}=\langle A B\rangle_{J}-\langle A\rangle_{J}\langle B\rangle_{J}$

\rightarrow Reflects level repulsion if the spectrum is random matrix-like

We calculate these quantities for large N
 and compare against numerical results

Analytical results

Method: Exact matrix integral representation; mapping to a supersymmetric sigma model;
saddle point equations; effective medium approximation

- I: Average density of states (ADoS) at band center $v=c D$
$N_{\mathrm{D}}^{-1 / 2} \xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet} \stackrel{I I}{ }$ ADoS $v=\frac{c D}{\sqrt{N_{\mathrm{D}}} \delta}$, spread of wave functions $D_{\mathrm{res}} \simeq \frac{D}{\sqrt{N_{\mathrm{D}}} \delta}$

$$
\text { - } I_{q}=q!D_{\mathrm{res}}^{1-q}
$$

Restricted

1

- III: ADoS $v=\frac{c D}{\sqrt{N_{\mathrm{D}}} \delta}$, spread of wave functions $D_{\text {res }} \simeq \frac{D}{\sqrt{N_{\mathrm{D}}} \delta^{2}}$

$$
\text { - } I_{q}=q!D_{\text {res }}^{1-q}=q(2 q-3)!!\left(\frac{4 \sqrt{N} \delta^{2}}{\pi D}\right)^{q-1} \quad \text { Strongly restricted }
$$

$$
\delta_{\mathrm{c}}=\frac{N_{\mathrm{D}}^{2}}{4 \sqrt{3}} \log N_{\mathrm{D}} \text { for large } N
$$

- IV: All eigenstates localized to $\mathcal{O}(1)$ sites

PRR 3, 013023 (2021)

$\left(N_{\mathrm{D}}=\frac{N}{2}, c=O(1), D=2^{N_{\mathrm{D}}-1}\right)$

Eigenenergy spectral

statistics (for odd N case for simplicity)
$\widetilde{K}(s)=1-\frac{\sin ^{2} s}{s^{2}}+\delta\left(\frac{s}{\pi}\right)$,
$s=\pi \omega \nu$ in I, II, III :
agrees with Gaussian
Unitary Ensemble (GUE)

Inverse participation ratio vs prediction for III

 IPR $I_{2}=$ average of $\sum_{n}|\langle\psi \mid n\rangle|^{4}$ for normalized $\psi, \frac{1}{D} \leq I_{2} \leq 1$

$$
I_{q}=\frac{q(2 q-3)!!}{\delta^{2(1-q)}}\left(\frac{\pi D}{4 \sqrt{N_{\mathrm{D}}}}\right)^{1-q}=q(2 q-3)!!\left(\frac{4 \sqrt{N_{\mathrm{D}}} \delta^{2}}{2^{N-1} \pi}\right)^{q-1} \text { in III }
$$

Higher moments of eigenvectors

PRR 3, 013023 (2021)
Analytical prediction:

$$
I_{q}=\frac{q(2 q-3)!!}{\delta^{2(1-q)}}\left(\frac{\pi D}{4 \sqrt{N_{\mathrm{D}}}}\right)^{1-q}=q(2 q-3)!!\left(\frac{4 \sqrt{N_{\mathrm{D}}} \delta^{2}}{2^{N-1} \pi}\right)^{q-1} \text { in III }
$$

Good agreement up to large q for $\delta \sim 1$

PRR 3, 013023 (2021)

Spectral statistics: gap ratio distribution

(Analytical prediction: $\delta_{\mathrm{c}}=\frac{Z}{\sqrt{2 \rho}} W(2 Z \sqrt{\pi})=38.47$)

PRR 3, 013023 (2021)
Departure from random matrix $P(r)$ occurs after I_{2} has grown significantly

Felipe Monteiro, Tobias Micklitz, Masaki Tezuka, and Alexander Altland, Phys. Rev. Research 3, 013023 (2021) arXiv:2005.12809

Sachdev-Ye-Kitaev model as tractable system

Numerical calculation of inverse
participation ratio, energy spectrum correlation

Four regimes (I: ergodic, II: localization starts, III: localization rapidly progresses, IV: MBL) found in $\mathrm{SYK}_{4}+\delta \mathrm{SYK}_{2}$ system (in SYK_{2}-diagonal basis);
I, II, III are chaotic while IV is not

Prediction for momenta of eigenstate wavefunctions I_{q} is verified by parameter free comparison, and energy spectrum statistics is consistent with GUE/Poisson transition well after entering regime III
\rightarrow Are eigenstates ergodic? Behavior of the entanglement entropy?

Physics just outside MBL (regions II \& III)?

- Thermal phase smoothly connected to extended states (as those in translationally invariant models)?
- Non-ergodic extended (NEE) states discussed for several models (Bethe lattice, random regular graphs, disordered Josephson junction chains, ...)

PRL 127, 030601 (2021)

Evaluation of entanglement entropy

Fock space $\mathcal{F}=\mathcal{F}_{A} \otimes \mathcal{F}_{B}$

Zero-energy eigenstate $|\psi\rangle$, density matrix $\rho=|\psi\rangle\langle\psi|$ Reduced density matrix $\rho_{A}=\operatorname{tr}_{B} \rho$

$$
\text { Entanglement entropy } S_{A}=-\operatorname{tr}_{A}\left(\rho_{A} \ln \rho_{A}\right)
$$

$$
n=(l, m)
$$

Evaluate disorder averaged moments $M_{r}=\left\langle\operatorname{tr}_{A}\left(\rho_{A}^{r}\right)\right\rangle, S_{A}=-\left.\partial_{r} M_{r}\right|_{r=1}$.

$$
\mathcal{N}=\left(n^{1}, n^{2}, \ldots, n^{r}\right), \mathcal{N}_{A}=\left(l^{1}, l^{2}, \ldots, l^{r}\right), \mathcal{N}_{B}=\left(m^{1}, m^{2}, \ldots, m^{r}\right)
$$

$$
\rho_{A}^{r}=\sum_{\substack{l^{1}, \ldots, l^{r} \\ m^{1}, \ldots, m^{r}}} \psi^{\left(l^{1}, m^{1}\right)} \bar{\psi}^{\left(l^{2}, m^{1}\right)} \psi^{\left(l^{2}, m^{2}\right)} \bar{\psi}^{\left(l^{3}, m^{2}\right)} \cdots \psi^{\left(l^{r}, m^{r}\right)} \bar{\psi}^{\left(l^{1}, m^{r}\right)}
$$

Evaluation of power of reduced density matrix

$$
\rho_{A}^{r}=\sum_{\substack{n^{1}, \ldots, l^{r} \\ m^{1}, \ldots, m^{r}}} \psi^{\left(l^{1}, m^{1}\right)} \bar{n}^{1} \bar{\psi}^{\left(l^{2}, m^{1}\right)} \psi^{\left(l^{2}, m^{2}\right)} \bar{\psi}^{\left(l^{3}, m^{2}\right)} \cdots \psi^{\left(l^{r}, m^{r}\right)} \bar{\psi}^{\left(l^{1}, m^{r}\right)}
$$

For this sum to survive disorder averaging,

$$
\begin{aligned}
& \mathcal{N}=\left(n^{1}, n^{2}, \ldots, n^{r}\right) \text { and } \overline{\mathcal{N}}=\left(\bar{n}^{1}, \bar{n}^{2}, \ldots, \bar{n}^{r}\right) \text { should be equal as sets, } \\
& \mathcal{N}^{i}=\overline{\mathcal{N}}^{\sigma(i)}
\end{aligned}
$$

Four regimes of $\mathrm{SYK}_{4}+\delta \mathrm{SYK}_{2}$

- IV: All eigenstates localized to $\mathcal{O}(1)$ sites

PRL 127, 030601 (2021)

Regime I: maximally random case

$$
D_{A(B)}=2^{N_{A(B)}-1}
$$

$$
M_{r}=\left\langle\operatorname{tr}_{A}\left(\rho_{A}^{r}\right)\right\rangle, S_{A}=-\left.\partial_{r} M_{r}\right|_{r=1}
$$

Uniform distribution of wave functions, $v_{n}=v$

$$
M_{r} \approx D_{A}^{1-r}+\binom{r}{2} D_{A}^{2-r} D_{B}^{-1}
$$

Up to single transpositions
Difference from the thermal value $S_{\text {th }}=\ln D_{A}$

$$
S_{A}-S_{\mathrm{th}}=-\frac{D_{A}}{2 D_{B}}
$$

Exponentially small if $N_{A} \ll N_{B}$; S_{A} very close to the thermal value

$$
\left.M_{r}=\left\langle\operatorname{tr}_{A}\left(\rho_{A}^{r}\right)\right\rangle=\left.\sum_{\sigma} \sum_{\mathcal{N}} \prod_{i=1}^{r}\langle | \psi_{n^{i}}\right|^{2}\right\rangle \delta_{\mathcal{N}_{A},(\sigma \circ \tau) \mathcal{N}_{A}} \delta_{\mathcal{N}_{B}, \sigma \mathcal{N}_{B}}
$$

Regimes II and III: reduced effective dimension

- Assume ergodicity and calculate S_{A}
- Energy shell: extended cluster of resonant sites (width κ) embedded in the Fock space
- Neighboring sites of n : energy $v_{m}=$ $v_{n} \pm \mathcal{O}(\delta)$, much more likely to be in the same shell because $\delta \ll \Delta_{2}=\sqrt{N_{\mathrm{D}}} \delta$

Additional assumptions

- Exponentially large number of sites \rightarrow self averaging
(sum over site energies = average over approx. Gaussian distributed contributions of subsystem energies to the total energy)
- Total energy $E \sim E_{A}+E_{B}$
\rightarrow Up to single transpositions (justified in $1 \ll N_{A} \ll N_{\mathrm{D}} \&$ replica limit):

$$
S_{A}-S_{\mathrm{th}}=-\frac{1}{2} \ln \left(\frac{N_{\mathrm{D}}}{N_{B}}\right)+\frac{N_{A}}{2 N_{D}}-\sqrt{\frac{N_{\mathrm{D}}}{2 N_{A}}} \frac{D_{A}}{2 D_{B}}\left(\frac{1}{\sqrt{N_{\mathrm{D}}}}<\delta<\delta_{\mathrm{c}} \sim N_{\mathrm{D}}^{2} \ln N_{\mathrm{D}}\right)
$$

$S_{A}-S_{\mathrm{th}}=-\frac{D_{A}}{2 D_{B}}$
in Regime I

PRL 127, 030601 (2021)

Offset from the thermal value

$N_{\mathrm{D}}=14$ ($N=28$ Majorana fermions)

$$
S_{A}-S_{\mathrm{th}}=-\frac{1}{2} \ln \left(\frac{N_{\mathrm{D}}}{N_{B}}\right)+\frac{N_{A}}{2 N_{D}}-\sqrt{\frac{N_{\mathrm{D}}}{2 N_{A}}} \frac{D_{A}}{2 D_{B}}(<0)
$$

in Regimes II, III $\left(\frac{1}{\sqrt{N_{\mathrm{D}}}} \ll \delta<\delta_{\mathrm{C}} \sim N_{\mathrm{D}}^{2} \ln N_{\mathrm{D}}\right)$

Phys. Rev. Research 3, 013023 (2021) arXiv:2005.12809 with Felipe Monteiro, Tobias Micklitz, and Alexander Altland Phys. Rev. Lett. 127, 030601 (2021) arXiv:2012.07884

Summary

- The Sachdev-Ye-Kitaev (SYK) model: quantum mechanical model realizing chaos bound (\sim random matrix, black holes)
- Several experimental proposals, small systems realized
- SYK_{4+2} : analytically tractable model for many-body localization (MBL)
- Fock space: (N/2)-dimensional hypercube
- Analytical results on eigenfunction moments and MBL point
\rightarrow Agreement with numerical results without free paramters
- Evaluation of entanglement entropy S_{A} assuming ergodicity in energy shells
\rightarrow Agreement between the numerical and analytical results
- Sparse SYK

