SYK模型における多体局在：

arXiv：2005．12809

Table of contents

1．Introduction：
a．Many－body localization and Fock－space localization
b．Sachdev－Ye－Kitaev model and deformation
2．Analytical predictions
3．Numerical results
4．Summary

Masaki TEZUKA（Kyoto University）

Fock space localization in the Sachdev－Ye－Kitaev model
F．Monteiro，T．Micklitz
Centro Brasileiro de Pesquisas Físicas，Rua Xavier Sigaud 150，22290－180，Rio de Janeiro，Brazil

> Masaki Tezuka
> Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Alexander Altland
Institut für Theoretische Physik，Universität zu Köln，Zülpicher Str．77， 50937 Cologne，Germany （Dated：June 16，2020）

We study the physics of many body localization in the Majorana Sachdev－Ye－Kitaev（SYK）model perturbed by a one－body Hamiltonian．Specifically，we consider the statistics of many body wave functions and spectra as the strength of the one－body term is ramped up from an ergodic phase via a regime of non－ergodic yet extended states into a（Fock space）Anderson localized phase．Our results are obtained from an effective low energy theory，derived from the microscopic model by matrix integral techniques standard in the theory of disordered electronic systems．Applicable to systems of arbitrarily large particle number，the analytical results produced by this formalism are compared to exact diagonalization for systems containing up to 30 Majorana fermions．The statistics of many body spectra and wave functions，and the indications of the localization transition are in quantitative agreement with numerics．We believe that this is the first many body system where a localization transition is observed in parameter free agreement with first principle analytical calculations．
PACS numbers： $05.45 . \mathrm{Mt}, 72.15 . \mathrm{Rn}, 71.30 .+\mathrm{h}$
in collaboration with Felipe Monteiro，Tobias Micklitz，and Alexander Altland

Localization phenomena in quantum systems: what is Fock space localization?

Anderson localization of (uncorrelated)
single particle wave functions:
Analytical techniques, good
agreements with numerics

Fock space localization $|\Psi\rangle \rightarrow\left|\phi_{1}\right\rangle\left|\varphi_{2}\right\rangle\left|\zeta_{3}\right\rangle \cdots\left|\xi_{N}\right\rangle$

- Spatially confined quantum systems (e.g. quantum dots)
- Many-body eigenstates localizing in the Fock space
[Altshuler-Gefen-Kamenev-Levitov PRL 1997, Silvestrov PRL 1997, PRB 1998, ...]

The Sachdev－Ye－Kitaev model

N Majorana－or Dirac－fermions with all－to－all random couplings

躴近の研究から Sachdev－Ye－Kitaev 模型，ブラックホール，冷却気体系

See e．g．［J．Polchinski and V．Rosenhaus，JHEP 1604 （2016）001］ ［J．Maldacena and D．Stanford，PRD 94， 106002 （2016）］ ［段下一平，手塚真樹，花田政範：日本物理学会誌 73（8）， 569 （2018）］

$\mathrm{SYK}_{q \geq 4}+\mathrm{SYK}_{2}:$ breakdown of chaos

$$
\hat{H}=\sum_{1 \leq a<b<c<d}^{N} \underset{J_{a b c a} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}}{\mathrm{SYK}_{1}+i} \sum_{1 \leq a<b}^{N} \underset{K_{a b} \hat{\chi}_{a} \hat{\chi}_{b}}{\mathrm{SYK}_{N}} \quad K_{a b}: \text { standard deviation }=\kappa / \sqrt{N}
$$

Deviation from Gaussian random matrix as SYK_{2} component is introduced

Our model and choice of basis

$\mathrm{SYK}_{4}+\delta \mathrm{SYK}_{2}$

$$
\hat{H}=-\sum_{1 \leq a<b<c<d}^{2 N} J^{\prime}{ }_{a b c a} \hat{\psi}_{a} \hat{\psi}_{b} \hat{\psi}_{c} \hat{\psi}_{d}+i \sum_{1 \leq a<b}^{2 N} K_{a b} \hat{\psi}_{a} \hat{\psi}_{b}
$$

Block-diagonalize the SYK_{2} part (the skew-symmetric matrix $\left(K_{a b}\right)$ has eigenvalues $\pm v_{j}$)

$$
\widehat{H}=-\sum_{1 \leq a<b<c<d}^{2 N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}+i \sum_{1 \leq j \leq N}^{N} v_{j} \hat{\chi}_{2 j-1} \hat{\chi}_{2 j}
$$

Normalization of $J_{a b c d}, v_{j}$: SYK_{4} bandwidth = 1, Width of v_{j} distribution $=\delta$

$$
\text { We choose }\left\{\hat{\psi}_{a}, \hat{\psi}_{b}\right\}=\left\{\hat{\chi}_{a}, \hat{\chi}_{b}\right\}=2 \delta_{a b} \text { as the }
$$ normalization for the $2 N$ Majorana fermions. For $\hat{c}_{j}=\frac{1}{2}\left(\hat{\chi}_{2 j-1}+\mathrm{i} \hat{\chi}_{2 \mathrm{j}}\right)$ we have $\left\{\hat{c}_{i}, \hat{c}_{j}^{\dagger}\right\}=\delta_{i j}$.

Our model and choice of basis

$N=7: 2^{7}=128$ states

Basis diagonalizing the complex fermion number operators $\hat{n}_{j}=\hat{c}_{j}^{\dagger} \hat{c}_{j} \rightarrow$ Sites: the 2^{N} vertices of an N-dim. hypercube.

$$
\hat{c}_{j}=\frac{1}{2}\left(\hat{\chi}_{2 j-1}+\mathrm{i} \hat{\chi}_{2 \mathrm{j}}\right)
$$

$$
\begin{aligned}
& \widehat{H}=-\sum_{1 \leq a<b<c<d}^{2 N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}+i \sum_{1 \leq j \leq N}^{N} v_{j} \hat{\chi}_{2 j-1} \hat{\chi}_{2 j} \\
& =-\sum_{1 \leq a<b<c<d}^{2 N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}+\sum_{1 \leq j \leq N}^{N} v_{j}\left(2 \hat{n}_{j}-1\right)
\end{aligned}
$$

Each term of SYK_{4} connects vertices with distance $=0,2,4$.
For $N=7$, each vertex is directly connected with 1 (distance=0, itself) + 21 (distance=2) + 35 (distance=4) vertices out of the possible $2^{N}=128$ (64 per parity).

Our model and choice of basis

2^{N} Fock states
$\mathcal{O}\left(N^{4}\right)$ neighbors

Basis diagonalizing the complex fermion number operators $\hat{n}_{j}=\hat{c}_{j}^{\dagger} \hat{c}_{j} \rightarrow$ Sites: the 2^{N} vertices of an N-dim. hypercube.

$\mathrm{SYK}_{4}+\delta \mathrm{SYK}_{2}$

$$
\widehat{H}=-\sum_{1 \leq a<b<c<d}^{2 N} J_{a b c a} \hat{x}_{a} \hat{x}_{b} \hat{x}_{c} \hat{x}_{d}+\sum_{1 \leq j \leq N}^{N} v_{j}\left(2 \hat{n}_{j}-1\right)
$$

Each term of SYK_{4} connects vertices with distance $=0,2,4$.

For $N=17$, each vertex is directly connected with 1 (distance=0, itself) +136 (distance=2) +2380 (distance=4) vertices out of the possible $2^{N}=131072$ (65536 per parity).

Four regimes of disorder strengths

Diagnostic quantities: Moments of wave functions and spectral two-point correlation function

- Moments of eigenstate wave functions

$$
\left.I_{q}=\left.v^{-1} \sum_{n, \psi}\langle |\langle\psi \mid n\rangle\right|^{2 q} \delta\left(E_{\psi}\right)\right\rangle_{J}
$$

with average density of states at band center

$$
v=v(E \simeq 0), v(E)=\sum_{\psi}\left\langle\delta\left(E-E_{\psi}\right)\right\rangle_{J}
$$

\rightarrow Parametrizes localization, allows comparison with numerics
$\left.I_{2}=\left.v^{-1} \sum_{n, \psi}\langle |\langle\psi \mid n\rangle\right|^{4} \delta\left(E_{\psi}\right)\right\rangle_{J}:$
inverse participation ratio (IPR), $\frac{1}{D} \leq I_{2} \leq 1$
Equal weights
D : dimension of $\{|n\rangle\}=2^{N-1}$
Single nonzero element

- Spectral two-point correlation function
$K(\omega)=v^{-2}\left\langle v\left(\frac{\omega}{2}\right) v\left(-\frac{\omega}{2}\right)\right\rangle_{c}$
c: connected part
$\langle A B\rangle_{c}=\langle A B\rangle_{J}-\langle A\rangle_{J}\langle B\rangle_{J}$

\rightarrow Reflects level repulsion if the spectrum is random matrix-like

We calculate these quantities for large N and compare against numerical results
arXiv:2005.12809

$$
\left(c=O(1), D=2^{N-1}\right)
$$

- I: Average density of states (ADoS) at band center $v=c D$
- $I_{q}=q!D^{1-q}$
ergodic
$N^{-1 / 2}$
- II II: ADoS $v=\frac{c D}{\sqrt{N} \delta}$, spread of wave functions $D_{\mathrm{res}} \simeq \frac{D}{\sqrt{N} \delta}$
- $I_{q}=q!D_{\mathrm{res}}^{1-q}$

weakly non-ergodic

1

- III: ADoS $v=\frac{c D}{\sqrt{N} \delta}$, spread of wave functions $D_{\mathrm{res}} \simeq \frac{D}{\sqrt{N} \delta^{2}}$
- $I_{q}=q!D_{\text {res }}^{1-q}=q(2 q-3)!!\left(\frac{4 \sqrt{N} \delta^{2}}{\pi D}\right)^{q-1}$
strongly non-ergodic
$\delta_{\mathrm{c}}=\frac{N^{2}}{4 \sqrt{3}} \log N$ for large N
- IV: All eigenstates localized to $\mathcal{O}(1)$ sites

Eigenenergy spectral
statistics (for odd N case for simplicity)
$\widetilde{K}(s)=1-\frac{\sin ^{2} s}{s^{2}}+\delta\left(\frac{s}{\pi}\right)$,
$s=\pi \omega v$ in I, II, III :
agrees with Gaussian
Unitary Ensemble (GUE)

> IV: Poisson statistics

Inverse participation ratio vs prediction for III

 IPR $I_{2}=$ average of $\sum_{n}|\langle\psi \mid n\rangle|^{4}$ for normalized $\psi, \frac{1}{D} \leq I_{2} \leq 1$

$$
I_{q}=\frac{q(2 q-3)!!}{\delta^{2(1-q)}}\left(\frac{\pi D}{4 \sqrt{N}}\right)^{1-q}=q(2 q-3)!!\left(\frac{4 \sqrt{N} \delta^{2}}{2^{N-1} \pi}\right)^{q-1} \text { in III }
$$

Central $1 / 7$ of the energy spectrum

```
8pL2-5
```

Analytical prediction:

Moments of eigenvectors

$$
I_{q}=\frac{q(2 q-3)!!}{\delta^{2(1-q)}}\left(\frac{\pi D}{4 \sqrt{N}}\right)^{1-q}=q(2 q-3)!!\left(\frac{4 \sqrt{N} \delta^{2}}{2^{N-1} \pi}\right)^{q-1} \text { in III }
$$

Good agreement up to large q for $\delta \sim 1$
Central $1 / 7$ of the energy spectrum

Spectral statistics: gap ratio distribution

$$
\left(\delta_{\mathrm{c}}=\frac{Z}{\sqrt{2 \rho}} W(2 Z \sqrt{\pi})=38.47\right)
$$

Departure from random matrix $P(r)$ occurs after I_{2} has grown significantly

Summary

Felipe Monteiro, Tobias Micklitz,

 Masaki Tezuka, and Alexander Altland, arXiv:2005.12809Fock space localization in many-body quantum systems

Analytical estimate of inverse participation ratio, spectral statistics

Sachdev-Ye-Kitaev model as tractable system

Numerical calculation of inverse participation ratio, energy spectrum correlation

Four regimes (I: ergodic, II: localization starts, III: localization rapidly progresses, IV: MBL) found in $\mathrm{SYK}_{4}+\delta \mathrm{SYK}_{2}$ system (in SYK_{2}-diagonal basis); I, II, III are chaotic while IV is not

Prediction for momenta of eigenstate wavefunctions I_{q} is verified by parameter free comparison, and energy spectrum statistics is consistent with GUE/Poisson transition well after entering regime III

