Workshop on Holography and Quantum Matter

The Sachdev－Ye－Kitaev model as a maximally chaotic lattice model： study towards experimental realization and new characterizations of chaos

26 August 2019
Masaki TEZUKA（手塚真樹）
（Kyoto University）

## contents

$$
\widehat{H}_{\mathrm{SYK}}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

maximally chaotic (chaos bound)
random matrix behavior of finite-time Lyapunov spectrum
[Classical] Hanada, Shimada and MT, PRE 2018 [1702.02197]
[Quantum] Gharibyan, Hanada,
modifications to study chaos / integrable transition
\& many-body localization

Swingle and MT, JHEP 2019 [1809.01671]

> random matrix behavior of two-point correlators

García-García et al., PRL 2018 [1707.02197]
García-García and MT, PRB 2019 [1801.03204]
Lau, Ma, Murugan, and MT, Phys. Lett. B 2019 [1812.04770]

Gharibyan, Hanada, Swingle and MT, 1902.11086

## Collaborators (in SYK-related papers) and references

- Jordan Saul Cotler ${ }^{a}$, Guy Gur-Ari ${ }^{a}(\rightarrow$ Google), Masanori Hanada (YITP $\rightarrow$ Boulder $\rightarrow$ Southampton)
- Joseph Polchinskib, Phil Saad ${ }^{a}$, Stephen H. Shenker ${ }^{a}$, Douglas Stanford ${ }^{a}$, Alexandre Streicher ${ }^{b}$
- Ippei Danshita (YITP $\rightarrow$ Kindai), Hidehiko Shimada (OIST), Hrant Gharibyan ${ }^{a}$, Brian Swingle (Maryland)
- Antonio M. García-García (SJTU), Bruno Loureiro (Cambridge), Aurelio Romero-Bermúdez (Leiden)
- Pak Hang Chris Lau (MIT $\rightarrow$ NTHU), Chen-Te Ma (SCNU \& Cape Town), Jeff Murugan (Cape Town \& KITP) ${ }^{a}$ Stanford ${ }^{b}$ UCSB

Danshita, Hanada, and MT, PTEP 2017, 083 I01 (arXiv:1606.02454)
Cotler, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher, and MT, JHEP 1705, 118 (2017)
(arXiv:1611.04650)
Hanada, Shimada, and MT, Phys. Rev. E 97, 022224 (2018) (arXiv:1702.06935)
García-García, Loureiro, Romero-Bermudez, and MT, PRL 120, 241603 (2018)
(arXiv:1707.02197)
García-García and MT, Phys. Rev. B 99, 054202 (2019) (arXiv:1801.03204)
Gharibyan, Hanada, Shenker, and MT, JHEP 1807, 124 (2018) (arXiv:1803.08050)
Gharibyan, Hanada, Swingle, and MT, JHEP 1904, 082 (2019) (arXiv:1809.01671), submitted (arXiv:1902.11086)

## The Sachdev-Ye-Kitaev model

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

cf. Sachdev-Ye model (1993)
[A. Kitaev, talks at KITP (2015)]
$\hat{\chi}_{a=1,2, \ldots, N}: N$ Majorana fermions $\left(\left\{\hat{\chi}_{a}, \hat{\chi}_{b}\right\}=\delta_{a b}\right)$
$J_{a b c d}$ : independent Gaussian random couplings $\left(\left\langle J_{a b c d}{ }^{2}\right\rangle=J^{2}=1\right)$


## Two versions of the SYK model

$N$ Majorana- or Dirac- fermions randomly coupled to each other
[Majorana version]

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c a} \hat{x}_{a} \hat{x}_{b} \hat{x}_{c} \hat{x}_{a}
$$

[A. Kitaev: talks at KITP
(Feb 12, Apr 7 and May 27, 2015)]
[Dirac version]
$\widehat{H}=\frac{1}{(2 N)^{3 / 2}} \sum_{i j ; k l} J_{i j ; k l} \hat{c}_{i}{ }^{\dagger} \hat{c}_{j}{ }^{\dagger} \hat{c}_{k} \hat{c}_{l}$
[A. Kitaev's talk]
[S. Sachdev: PRX 5, 041025 (2015)]
Studied as "Two-body random ensemble" since 1970s
(The first paper by A. Kitaev on the SYK model:
Alexei Kitaev and S. Josephine Suh, arXiv:1711.08467 (JHEP05(2018)183);
First papers by J. Ye on the SYK model: arXiv:1809.06667 and arXiv:1809.07577)

## Why solvable in the $N \gg 1$ limit?

(after sample average $\langle\cdots\rangle_{\{ \}}$)
Free two-point function $G_{0}(t) \delta_{i j}=-\left\langle\mathrm{T} \psi_{i}(t) \psi_{j}(0)\right\rangle=-\frac{1}{2} \operatorname{sgn}(t) \delta_{i j}$
Perturbation expansion by interaction term

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

$\left\langle J_{a b c d}{ }^{2}\right\rangle_{\{J\}}=J^{2}$, independent Gaussian distribution
$\left\langle J_{a b c d} J_{a b c e}\right\rangle_{\{ \}\}}=0$ if $d \neq e \rightarrow$ Most diagrams average to zero
"Melon-type" diagrams dominate in large $N$

## "Melon" diagrams dominate in the $N \gg 1$ limit

Dotted line connects same couplings


$$
G^{0} \Sigma G^{0} \Sigma G^{0} \Sigma G^{0}+\cdots
$$

Figure from [I. Danshita, M. Tezuka, and M. Hanada: Butsuri 73(8), 569 (2018)]

## Feynman diagrams

[J. Polchinski and V. Rosenhaus, JHEP 1604 (2016) 001]
[J. Maldacena and D. Stanford, PRD 94, 106002 (2016)]
$\widehat{H}=\frac{\sqrt{3!}}{N 3 / 2} \sum_{1 \leq a<b<c<d \leq N} \operatorname{Jabcd}^{\hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}, ~}$

$$
\begin{aligned}
& \left\{\hat{\chi}_{a}, \hat{\chi}_{b}\right\}=\delta_{a b} \\
& \left\langle J_{a b c d}{ }^{2}\right\rangle=J^{2}=1
\end{aligned}
$$



$$
\sum_{j k l}\left\langle J_{i j k l} J_{j k l m}\right\rangle_{\hat{U}\}}=\frac{N^{3}}{3!} \delta_{i m}
$$


$O\left(N^{0}\right)$ contribution
$O\left(N^{-2}\right)$ contribution

## Reparametrization symmetry

$$
\begin{aligned}
& G\left(1-\Sigma G_{0}\right)=G_{0} \\
& G^{-1}=G_{0}^{-1}-\Sigma \\
& G(i \omega)^{-1}=i \omega-\Sigma(i \omega) \quad \Sigma=J^{2} G^{3}
\end{aligned}
$$

Low energy ( $\omega, T \ll J$ ): ignore $i \omega$ and we have

$$
\int d t G\left(t_{1}, t\right) \Sigma\left(t, t_{2}\right)=-\delta\left(t_{1}, t_{2}\right)
$$

Invariant under imaginary time reparametrization

$$
\begin{array}{rlrl}
\tau & =f(\sigma), \\
G\left(\tau_{1}, \tau_{2}\right) & =\left[f^{\prime}\left(\sigma_{1}\right) f^{\prime}\left(\sigma_{2}\right)\right]^{-1 / 4} \frac{g\left(\sigma_{1}\right)}{g\left(\sigma_{2}\right)} G\left(\sigma_{1}, \sigma_{2}\right), & \beta \\
\tilde{\Sigma}\left(\tau_{1}, \tau_{2}\right) & =\left[f^{\prime}\left(\sigma_{1}\right) f^{\prime}\left(\sigma_{2}\right)\right]^{-3 / 4} \frac{g\left(\sigma_{1}\right)}{g\left(\sigma_{2}\right)} \tilde{\Sigma}\left(\sigma_{1}, \sigma_{2}\right), & \\
\hline
\end{array}
$$

## Large- $N$ saddle point solution

$\int d t G\left(t_{1}, t\right) \Sigma\left(t, t_{2}\right)=-\delta\left(t_{1}, t_{2}\right)$
(Derived in replica formalism; assume replica symmetry)

$$
G_{s}\left(\tau_{1}-\tau_{2}\right) \sim\left(\tau_{1}-\tau_{2}\right)^{-1 / 2} \quad, \quad \Sigma_{s}\left(\tau_{1}-\tau_{2}\right) \sim\left(\tau_{1}-\tau_{2}\right)^{-3 / 2}
$$

Not invariant under arbitrary reparametrization, but invariant under

$$
f(\tau)=\frac{a \tau+b}{c \tau+d} \quad, \quad a d-b c=1 .
$$

Symmetry broken to $S L(2, R)$. cf. isometry group of $\mathrm{AdS}_{2}$ [see e.g. A. Strominger, hep-th/9809027]
[J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002 (2016)] Study of the Goldstone modes: e.g. [D. Bagrets, A. Altland, and A. Kamenev, Nucl. Phys. B 911, 191 (2016)]

SYK: Nearly $\mathrm{CFT}_{1}{ }^{\text {"NCFT }}{ }_{1}$ " emergent conformal gauge invariance [Sachdev, PRX 5, 041025 (2015)]

## Definition of Lyapunov exponent using out-of-time-order correlators

$$
F(t)=\left\langle\hat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \hat{W}(t) \hat{V}(0)\right\rangle \quad W(t)=\mathrm{e}^{i H t} W \mathrm{e}^{-i H t}
$$

Classical:
Infinitesimally different initial states


Consider operators $V$ and $W$,

$$
\begin{aligned}
C(t) & \left.=\left.\langle |[W(t), V(t=0)]\right|^{2}\right\rangle \\
& =2(1-\operatorname{Re} F(t))
\end{aligned}
$$

quantifies strength of quantum scrambling
"Black holes are fastest quantum scramblers"
[P. Hayden and J. Preskill 2007] [Y. Sekino and
L. Susskind 2008] [Shenker and Stanford 2014]

Chaos bound $\lambda_{\mathrm{L}}=2 \pi k_{\mathrm{B}} T / \hbar$
[J. Maldacena, S. H. Shenker, and D. Stanford, JHEPO8(2016)106]

# Out-of-time-ordered correlators (OTOCs) <br>  

Regularized OTOC can be calculated for large- $N$ SYK model, $\quad\left\langle\hat{\chi}_{i}\left(t_{1}\right) \hat{x}_{i}\left(t_{2}\right) \hat{x}_{j}\left(t_{3}\right) \hat{x}_{j}\left(t_{4}\right)\right\rangle$
(a) satisfies the chaos bound
$\lambda_{\mathrm{L}}=2 \pi k_{\mathrm{B}} T / \hbar$ at low $T$ limit


$$
\Gamma\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=\Gamma_{0}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)+\int d t_{a} d t_{b} \Gamma\left(t_{1}, t_{2}, t_{a}, t_{b}\right) K\left(t_{a}, t_{b}, t_{3}, t_{4}\right)
$$

large q


[Kitaev's talks]
[J. Polchinski and V. Rosenhaus, JHEP 1604 (2016) 001]
[J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002 (2016)]

## Holographic connection to gravity

$$
H=\frac{1}{(2 N)^{3 / 2}} \sum_{i, j, k, \ell=1}^{N} J_{i j ; k \ell} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{\ell}
$$



$$
\mathcal{Q}=\frac{1}{N} \sum_{i}\left\langle c_{i}^{\dagger} c_{i}\right\rangle
$$

$$
-\left\langle c_{i}(\tau) c_{i}^{\dagger}(0)\right\rangle \sim\left\{\begin{array}{cc}
-\tau^{-1 / 2} & \tau>0 \\
e^{-2 \pi \mathcal{E}}|\tau|^{-1 / 2} & , \tau<0
\end{array}\right.
$$

Known "equation of state" determines $\mathcal{E}$ as a function of $\mathcal{Q}$

Microscopic zero temperature entropy density $\mathcal{S}$ obeys

$$
\frac{\partial \mathcal{S}}{\partial \mathcal{Q}}=2 \pi \mathcal{E}
$$

Einstein-Maxwell theory

$$
+ \text { cosmological constant }
$$

Horizon area $\mathcal{A}_{h}$;

$$
\mathrm{AdS}_{2} \times R^{d}
$$

$d s^{2}=\left(d \zeta^{2}-d t^{2}\right) / \zeta^{2}+d \vec{x}^{2}$
Gauge field: $A=(\mathcal{E} / \zeta) d t$
$\zeta=\infty$
$\mathcal{L}=\bar{\psi} \Gamma^{\alpha} D_{\alpha} \psi+m \bar{\psi} \psi$
$-\langle\psi(\tau) \bar{\psi}(0)\rangle \sim\left\{\begin{array}{cc}-\tau^{-1 / 2}, & \tau>0 \\ e^{-2 \pi \mathcal{E}}|\tau|^{-1 / 2}, & \tau<0 .\end{array}\right.$
"Equation of state" relating $\mathcal{E}$ and $\mathcal{Q}$ depends upon the geometry of spacetime far from the $\mathrm{AdS}_{2}$

Black hole thermodynamics (classical general relativity) yields

$$
\frac{\partial \mathcal{S}_{\mathrm{BH}}}{\partial \mathcal{Q}}=2 \pi \mathcal{E}
$$

[S. Sachdev, Phys. Rev. X 5, 041025 (2015)]

## Contents

- The Sachdev-Ye-Kitaev model
$\checkmark$ Large- $N$ solvability: conformal symmetry and maximal chaos
- Experimental proposal 1606.02454 (and realization)
- Deformation and suppression of maximal chaos 1707.02197
- Characterization of chaos in random systems 1702.06935
- Quantum Lyapunov spectrum 1809.01671
- Singular value statistics of two-point correlators 1902.11086


## Towards quantum gravity experiments using holography


© Not limited to classical limit
$\rightarrow$ Several supporting evidences
e.g. check of the leading gravity correction for the black hole mass [M. Hanada, Y. Hyakutake, G. ishiki, and J. Nishimura, Science 344, 882 (2013)]

Many "AdS/CMT" applications

This work:
approach quantum gravity by realizing corresponding non-gravity models in cold gases

Our proposal: coupled atom-molecule model [arXiv:1606.02454]
Consider atomic levels $i, j, \ldots=1,2, \ldots, N$ coupled to a molecule state $m_{1}$

$$
\begin{aligned}
\hat{H}_{\mathrm{m} 1} & =\nu \hat{m}^{\dagger} \hat{m}+\sum_{i, j} g_{i j}\left(\hat{m}^{\dagger} \hat{c}_{j} \hat{c}_{i}+h . c .\right) \\
g_{i j} & =\frac{1}{2} \operatorname{sgn}(j-i) \int d \boldsymbol{r} \Omega_{i, j}(\mathbf{r}) w_{m}(\boldsymbol{r}) w_{a, i}(\boldsymbol{r}) w_{a, j}(\boldsymbol{r})
\end{aligned}
$$

Detuning v: controlled by laser energy
$\Omega_{i, j}$ : photoassociation (PA) laser
$w_{m}$ : molecular site wavefunctions
$w_{a, i v)}$ : atomic site wavefunctions


$$
s=1,2, \ldots, n_{s}
$$

Consider multiple molecular states; assume they are short-lived
$\rightarrow$ integrate them out and obtain the effective model for atoms

$$
\hat{H}_{\mathrm{eff}}=\sum_{s, i, j, k, l} \frac{g_{s, i j} g_{s, k l}}{\nu_{s}} \hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l}
$$

## Realizing Dirac SYK model

$$
\hat{H}_{\mathrm{eff}}=\sum_{s, i, j, k, l} \frac{g_{s, i j} g_{s, k l}}{\nu_{s}} \hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l} \quad \begin{aligned}
& s=1,2, \ldots, n_{\mathrm{s}} \\
& \text { (Gaussian distribution for } g \text { ) }
\end{aligned}
$$

(For simplicity we take $v_{s}=(-1)^{S} \sqrt{n_{\mathrm{s}}} \sigma_{S}$ )
approaches the real-coupling version of the Dirac SYK model as $n_{\mathrm{s}} \rightarrow \infty$.

Real SYK:

Gaussian J reproduced

$$
\overline{\left|J_{i j ; k l}\right|^{2}}= \begin{cases}J^{2} & (\{i, j\} \neq\{k, l\}) \\ 2 J^{2} & (\{i, j\}=\{k, l\})\end{cases}
$$



Physical quantities coincide

$$
J_{i j ; k l}=J_{k l, i j}
$$ with those for complex SYK in $N \rightarrow \infty$ limit

$$
J_{i j ; k l}=-J_{j i ; k l}=-J_{i j ; l k},
$$



## Optical lattice setup in our proposal

A double-well optical lattice (no degeneracy in the band levels) with ${ }^{6} \mathrm{Li}$ (large recoil energy)


Possible to satisfy required conditions

$$
\begin{aligned}
& \max \left(t_{i}\right) \lesssim \hbar / \tau_{\exp } \ll J, \\
& \max \left(\hbar \Gamma_{\mathrm{PA}}, \hbar \Gamma_{\mathrm{ms}, s}\right) \ll\left|\nu_{s}\right| \ll \Delta_{\min }, \text { for all } s, \\
& \Delta_{\max }<\Delta_{\mathrm{MB}}<\tilde{\Delta}, \\
& \left|\nu_{s}\right| \ll\left|U_{s, s^{\prime}}\right| \text {, for all } s \text { and } s^{\prime}, \\
& \left|U_{s, s^{\prime}}\right|<\Delta_{\min } \text { or } \Delta_{\max }<\left|U_{s, s^{\prime}}\right|, \text { for all } s \text { and } s^{\prime} .
\end{aligned}
$$

Danshita, Hanada, and MT, PTEP 2017, 083I01 (arXiv:1606.02454)

## Out-of-time-order correlation measurement

Interferometric protocol proposed in
B. Swingle et al.: PRB 94, 040302 (2016)

$|\psi\rangle_{\mathcal{S}}$ : Initial state of the probed system
$|0\rangle_{\mathcal{C}},|1\rangle_{\mathcal{C}}$ : states of the control qubit

$$
\widehat{W}(t)=\mathrm{e}^{i H t} \widehat{W} \mathrm{e}^{-i H t}
$$

Create the cat state

$$
|\Psi\rangle=\widehat{W}(t) \widehat{V}|\psi\rangle_{S}|1\rangle_{C}+\widehat{V} \widehat{W}(t)|\psi\rangle_{S}|0\rangle_{C}
$$

$$
F(t)=\left\langle\hat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \hat{W}(t) \hat{V}(0)\right\rangle
$$


by applying

$$
\widehat{I_{S}} \otimes|0\rangle\left\langle\left. 0\right|_{C}+\widehat{V} \otimes \mid 1\right\rangle\left\langle\left. 1\right|_{C}, \widehat{W}(t) \otimes \widehat{I_{C}}\right.
$$ and $\hat{V} \otimes|0\rangle\left\langle\left. 0\right|_{C}+\widehat{I}_{S} \otimes \mid 1\right\rangle\left\langle\left. 1\right|_{C}\right.$ in this order, then measure the qubit to find $\operatorname{Re} F(t)$ and $\operatorname{Im} F(t)$.

$\rightarrow$ Implementation of this protocol in our model

Our qubit $C$ :
A single particle in a double well using a qubit on additional optical double well [1606.02454]

## Proposals for experimental realization



Zero energy states: Majorana fermions

D. I. Pikulin and M. Franz, "Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System",
PRX 7, 031006 (2017)
arXiv:1702.04426

## Proposals for experimental realization



> Reienenticle P Pulisised. 29Norember 2018
Mimicking black hole event horizons in atomic and solid-state systems

> Marcel Franz \& Moshe Rozali
> Nature Reviews Materials 3, 491-501 (2018) | Download Citation $\underline{\downarrow}$

Anffany Chen, R. Ilan, F. de Juan, D.I. Pikulin, M. Franz,
"Quantum holography in a graphene flake with an irregular boundary", PRL 121, 036403 (2018) arXiv:1802.00802

## NMR experiment for the SYK model

"Quantum simulation of the non-fermi-liquid state of Sachdev-Ye-Kitaev model" Zhihuang Luo, Yi-Zhuang You, Jun Li, Chao-Ming Jian, Dawei Lu, Cenke Xu , Bei Zeng and Raymond Laflamme, npj Quantum Information 5, 53 (2019)


$$
H=\frac{J_{i j k l}}{4!} \chi_{i} \chi_{j} \chi_{k} \chi_{l}+\frac{\mu}{4} C_{i j} C_{k l} \chi_{i} \chi_{j} \chi_{k} \chi_{l}
$$

$$
\chi_{2 i-1}=\frac{1}{\sqrt{2}} \sigma_{x}^{1} \sigma_{x}^{2} \cdots \sigma_{x}^{i-1} \sigma_{z}^{i}, \chi_{2 i}=\frac{1}{\sqrt{2}} \sigma_{x}^{1} \sigma_{x}^{2} \cdots \sigma_{x}^{i-1} \sigma_{y}^{i} .
$$

$$
H=\sum_{s=1}^{70} H_{s}=\sum_{s=1}^{70} a_{i j k l}^{s} \sigma_{\alpha_{i}}^{1} \sigma_{\alpha_{j}}^{2} \sigma_{\alpha_{k}}^{3} \sigma_{\alpha_{l}}^{4}
$$

$$
e^{-i H H_{\tau}}=\left(\prod_{s=1}^{70} e^{-i H_{i}, / n}\right)^{n}+\sum_{s<s} \frac{\left[H_{s}, H_{s}\right] \tau^{2}}{2 n}
$$

$$
+O\left(|a|^{3} \tau^{3} / n^{2}\right),
$$



## $\mathrm{SYK}_{4}+\mathrm{SYK}_{2}$ : Large-N calculation for OTOC


A. M. Garcia-Garcia, B. Loureiro, A. Romero-Bermudez, and MT, PRL 120, 241603 (2018)

Deviation from the chaos bound as $\mathrm{SYK}_{2}$ component is introduced

## Contents

$\checkmark$ The Sachdev-Ye-Kitaev model
$\checkmark$ Large- $N$ solvability: conformal symmetry and maximal chaos
$\checkmark$ Experimental proposal 1606.02454 (and realization)
$\checkmark$ Deformation and suppression of maximal chaos 1707.02197

- Characterization of chaos in random systems 1702.06935
- Quantum Lyapunov spectrum 1809.01671
- Singular value statistics of two-point correlators 1902.11086


## The Bohigas-Giannoni-Schmit conjecture

Assume quantum mechanical systems with a classical limit

"Spectral statistics of chaotic systems can be described as a random matrix"
O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984);
J. de Phys. Lett. 45, 1015 (1984).

## Justifications:

Non-linear sigma-model
(Andreev 1993, Altland 2015)
Gutzwiller trace formula in
terms of periodic orbits
(Berry 1985, Gutzwiller 1990,
Sieber, Richter, Braun, Muller,
Heusler, ...)

Also more examples including systems without clear classical version

## Gaussian random matrices


$a_{i j}=a_{j i}^{*} \quad$ Density $\propto e^{-\frac{\beta K}{4} \operatorname{Tr} H^{2}}=\exp \left(-\frac{\beta K}{4} \sum_{i, j}^{K}\left|a_{i j}\right|^{2}\right)$
$\left(a_{i j}\right)_{i, j=1}^{K}$
Gaussian distribution

Real ( $\beta=1$ ): Gaussian Orthogonal Ensemble (GOE) Complex ( $\beta=2$ ): G. Unitary E. (GUE)
Quaternion ( $\beta=4$ ): G. Symplectic E. (GSE)
Joint distribution function
Level repulsion for eigenvalues $\left\{e_{j}\right\}$

$$
p\left(e_{1}, e_{2}, \ldots, e_{K}\right) \propto \prod_{1 \leq i<j \leq K}\left|e_{i}-e_{j}\right|^{\beta} \prod_{i=1}^{n} e^{-\beta K e_{i}^{2} / 4}
$$

- $P(s)$ : Distribution of normalized level separation $s_{j}=\frac{e_{j+1}-e_{j}}{\Delta(\bar{e})}$

GOE/GUE/GSE: $P(s) \propto s^{\beta}$ at small $s$, has $e^{-s^{2}}$ tail Uncorrelated (Poisson): $P(s)=e^{-s}$

- $\langle r\rangle$ : Average of neighboring gap ratio
$r=\frac{\min \left(e_{i+1}-e_{i}, e_{i+2}-e_{i+1}\right)}{\max \left(e_{i+1}-e_{i}, e_{i+2}-e_{i+1}\right)}$

|  | Uncorrelated | GOE | GUE | GSE |
| :--- | :--- | :--- | :--- | :--- |
| $\langle r\rangle$ | $2 \log 2-1=0.38629 \ldots$ | $0.5307(1)$ | $0.5996(1)$ | $0.6744(1)$ |

[Y. Y. Atas et al. PRL 2013]

# $N$ mod 8 classification of Majorana SYK $_{q=4}$ 

$\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}$
SPT phase classification for class BDI:
$\mathbb{Z} \rightarrow \mathbb{Z}_{8}$ due to interaction
[L. Fidkowski and A. Kitaev, PRB 2010, PRB 2011]

Introduce $N / 2$ complex fermions $\hat{c}_{j}=\frac{\left(\hat{\chi}_{2 j-1}+\mathrm{i} \hat{\chi}_{2 j}\right)}{\sqrt{2}}$ $\hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}$ respects the complex fermion parity

| $\hat{X} \quad N \equiv 0,4$ | Even ( $\widehat{H}_{\mathrm{E}}$ ) and odd ( $\widehat{H}_{\mathrm{O}}$ ) sectors: $L=2^{N / 2}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $N \bmod 8$ | 0 | 2 | 4 | 6 |
| $H_{E}$ | $\eta$ | -1 | +1 | +1 | -1 |
|  | $\hat{X}^{2}$ | +1 | +1 | -1 | -1 |
|  | $\hat{X}$ maps $H_{\mathrm{E}}$ to | $H_{\text {E }}$ | $H_{0}$ | $H_{\text {E }}$ | $H_{0}$ |
| $v \equiv 2,6 \quad \mathrm{H}_{0}$ | Class | AI | A+A | All | A+A |
|  | Gaussian ensemble | GOE | GUE | GSE | GUE |

$$
\hat{X}=\hat{K} \prod_{j=1}^{N / 2}\left(\hat{c}_{j}^{\dagger}+\hat{c}_{j}\right)
$$

$$
\widehat{X} \hat{c}_{j} \hat{X}=\eta \hat{c}_{j}^{\dagger} ;[\hat{X}, \widehat{H}]=0
$$

[You, Ludwig, and Xu, PRB 2017]
[Fadi Sun and Jinwu Ye, 1905.07694] for SYK ${ }_{q}$, supersymmetric SYK

SYK: sparse matrix, but energy spectral statistics strongly resemble that of the corresponding (dense) Gaussian ensemble

The spectral form factor $g(\beta, t)=\frac{\left.\left.\langle | Z(\beta, t)\right|^{2}\right\rangle_{J}}{\langle Z(\beta)\rangle_{J}{ }^{2}}$

$$
Z(\beta, t)=Z(\beta+\mathrm{i} t)=\operatorname{Tr}\left(\mathrm{e}^{-\beta \hat{H}-\mathrm{i} \hat{H} t}\right)
$$


(Non-)self-averaging


1 sample = many samples Self-averaging
"Gravity"
1/N expansion
$O(1)$ variance for 1 sample Not self-averaging
"Random matrix theory" $1 / K \sim \mathrm{e}^{-N}$ expansion
$K=2^{N / 2}$

Note: dip-ramp-plateau structure does not require chaos

"Randomness and Chaos in Qubit Models" Pak Hang Chris Lau, Chen-Te Ma, Jeff Murugan, and MT, Phys. Lett. B 795, 230 (2019).

## Lyapunov growth of phase space



- Just one direction?
-If more than one, what are relations between $\lambda$ ?


## Quantum Lyapunov spectrum

Finite-time classical Lyapunov spectrum: obeys RMT statistics for chaos
[Hanada, Shimada, and MT: PRE 97, 022224 (2018)]

$$
\begin{aligned}
& \text { Singular values of } M_{i j}=\left(\frac{\partial x_{i}(t)}{\partial x_{j}(0)}\right) \text { at finite } t:\left\{s_{k}(t)\right\}=\left\{e^{\lambda_{k} t}\right\} \\
& L=\left\{x_{i}(t), p_{j}(0)\right\}_{\mathrm{PB}}{ }^{2}=\left(\frac{\partial x_{i}(t)}{\partial x_{j}(0)}\right)^{2} \rightarrow e^{2 \lambda_{\mathrm{L}} t} \text { for large } t \xrightarrow[0]{\substack{\delta \vec{x}(t) \\
=M \delta \vec{x}(0)}} \xrightarrow{\rightarrow}
\end{aligned}
$$

$$
\text { отос: } \left.C_{T}(t)=\left.\langle |[\widehat{W}(t), \widehat{V}(t=0)]\right|^{2}\right\rangle=\left\langle\widehat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \widehat{W}(t) \hat{V}(0)\right\rangle+\cdots
$$

Quantum Lyapunov spectrum: Define $\widehat{M}_{a b}(t)$ as (anti)commutator of $\widehat{O}_{a}(t)$ and $\widehat{O}_{b}(0)$

$$
\hat{L}_{a b}(t)=\left[\widehat{M}(t)^{\dagger} \widehat{M}(t)\right]_{a b}=\sum_{j=1}^{N} \widehat{M}_{j a}(t)^{\dagger} \widehat{M}_{j b}(t)
$$

For $N \times N$ matrix $\langle\phi| \hat{L}_{a b}(t)|\phi\rangle$, obtain singular values $\left\{s_{k}(t)\right\}_{k=1}^{N}$.
The Lyapunov spectrum is defined as $\left\{\lambda_{k}(t)=\frac{\log s_{k}(t)}{2 t}\right\}$.

## Quantum Lyapunov spectrum for SYK model + modification

$$
\widehat{H}=\sum_{1 \leq a<b<c<d}^{N} J_{a b c d} \hat{X}_{a} \hat{\chi}_{b} \hat{x}_{c} \hat{\chi}_{d}+i \sum_{1 \leq a<b}^{N} K_{a b} \hat{\chi}_{a} \hat{\chi}_{b} \quad \begin{array}{ll}
J_{a b c a}: s . \text { d. }=\frac{\sqrt{6}}{N^{3 / 2}} & K_{a b}: \text { s. d. }=\frac{K}{\sqrt{N}}
\end{array}
$$

- Define $\hat{L}_{a b}(t)=\sum_{j=1}^{N} \widehat{M}_{j a}(t) \widehat{M}_{j b}(t)$ for time-dependent anticommutator $\widehat{M}_{a b}(t)=\left\{\hat{\chi}_{a}(t), \hat{\chi}_{b}(0)\right\}$.
- Obtain the singular values $\left\{a_{k}(t)\right\}_{k=1}^{K}$ of $\langle\phi| \hat{L}_{a b}(t)|\phi\rangle$
- Quantum Lyapunov spectrum: $\left\{\lambda_{k}(t)=\frac{\log a_{k}(t)}{2 t}\right\}_{k=1,2, \ldots, K}$ (also dependent on state $\phi$ )


## Spectral statistics of quantum Lyapunov spectrum: SYK


$K=0.01\left(\right.$ ) : Remains ${ }^{s}$ GUE for long time


(fixed-i unfolding: unfold each gap $g_{i}=\lambda_{i+1}-\lambda_{i}$ using its average $\left.\left\langle g_{i}\right\rangle_{J}, s_{i}=g_{i} /\left\langle g_{i}\right\rangle_{J}\right\rangle$

## Growth of (largest Lyapunov exponent)*time



## Kolmogorov-Sinai entropy vs entanglement entropy production

Initial state with $S_{\mathrm{EE}}=0$ :

$$
|\psi(t=0)\rangle=|000 \ldots 000\rangle
$$

in the complex fermion basis
$=\log$ (\# of cells covering the region) $\sim($ sum of positive $\lambda) t$


Kolmogorov-Sinai entropy $h_{\text {KS }}$
= (sum of positive $\lambda$ )
= entropy production rate


$$
\hat{c}_{j}=\frac{\left(\chi_{2 j-1}+\mathrm{i} \chi_{2 j}\right)}{\sqrt{2}}
$$

B $\quad \rho_{\mathrm{A}}(t)=\operatorname{Tr}_{\mathrm{B}} \rho(t), \rho(t)=|\psi(t)\rangle \psi(t) \mid$


## Fastest entropy production?

SYK ${ }_{4}$ limit

- $\lambda_{N}$ and $\lambda_{\text {OTOC }}=\frac{1}{2 t} \log \left(\frac{1}{N} \sum_{i=1}^{N} e^{2 \lambda_{i} t}\right)$ approach each other; difference decreases as $1 / N$
- Same for $\lambda_{N}$ and $\lambda_{1}$ :

$$
\text { all exponent } \rightarrow \text { single peak }
$$

- All saturate the MSS bound at strong coupling (low $T$ ) limit
- Growth rate of entanglement entropy $\sim h_{\mathrm{KS}}=$ sum of positive (all) $\lambda_{i}$

$\rightarrow$ [conjecture] SYK model: not only the fastest scramblers, but also fastest entropy generators


## QLS: The case of the random field XXZ model

$$
\widehat{H}=\sum_{i}^{N} \widehat{S}_{i} \cdot \widehat{S}_{i+1}+\sum_{i}^{N} h_{i} \widehat{S_{i}^{z}} \quad h_{i}: \text { uniform distribution }[-W, W]
$$

Many-body localization (MBL) transition at $W=W_{c} \sim 3.5$
(though recently disputed; e.g. $W_{\mathrm{c}} \geq 5$ proposed in E. V. H. Doggen et al., [1807.05051] using large systems with time-dependent variational principle \& machine learning)
e.g. M. Serbyn, Z. Papic, and D. A. Abanin,

Phys. Rev. X 5, 041047 (2015) (arXiv:1507.01635)
Matrix element of local perturbation
$\mathcal{G}(\varepsilon, L)=\ln \frac{\left|V_{n, n+1}\right|}{E_{n+1}^{\prime}-E_{n}^{\prime}}$
Energy separation of neighboring energy eigenstates


## Spectral statistics of QLS for random field XXZ

$$
\widehat{H}=\sum_{i}^{N} \widehat{S}_{i} \cdot \widehat{S}_{i+1}+\sum_{i}^{N} h_{i} \widehat{S_{i}^{Z}} \quad h_{i}: \text { uniform distribution }[-W, W] \quad \widehat{M}_{a b}(t)=\left[\widehat{S_{a}^{+}}(t), \widehat{S_{b}^{-}}(0)\right]
$$



Quantum Lyapunov spectrum distinguishes chaotic and non-chaotic phases

## Two-point correlation function

$$
G_{a b}^{(\phi)}(t)=\langle\phi| \hat{\chi}_{a}(t) \hat{\chi}_{b}(0)|\phi\rangle
$$

## Singular value statistics of two-point time correlators

$$
\begin{aligned}
& G_{a b}^{(\phi)}(t)=\langle\phi| \hat{\chi}_{a}(t) \hat{\chi}_{b}(0)|\phi\rangle \text { as a matrix } \\
& \lambda_{j}(t)=\log \left[\text { singular values of }\left(G_{a b}^{(\phi)}(t)\right)\right]
\end{aligned}
$$


$\langle r\rangle$ : average of the adjacent gap ratio $\frac{\min \left(\lambda_{i+1}-\lambda_{i}, \lambda_{i+2}-\lambda_{i+1}\right)}{\max \left(\lambda_{i+1}-\lambda_{i}, \lambda_{i+2}-\lambda_{i+1}\right)}$
Uncorrelated (Poisson): $2 \log 2-1 \approx 0.386$
Correlated: larger (GOE: 0.5307, GUE: 0.5996 etc. ) [Atas et al., PRL 2013]


At late time, for two-point correlator singular values, Random matrix behavior $\Leftrightarrow$ chaotic

## Summary

$$
\widehat{H}_{\mathrm{SYK}}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

## black hole

maximally chaotic holography (chaos bound)
 maximally chaotic (chaos bound)

## non-gravitational quantum system

## cold atom realization

Danshita, Hanada and MT, PTEP 2017 [1606.02454]
random matrix behavior of
finite-time Lyapunov spectrum
[Quantum] Gharibyan, Hanada,
Swingle and MT, JHEP 2019 [1809.01671]
> random matrix behavior of two-point correlators

## modifications to study <br> chaos / integrable transition <br> \& many-body localization

García-García et al., PRL 2018 [1707.02197]

> P. H. C. Lau, Chen-Te Ma, J. Murugan, and MT, Phys. Lett. B 2019 [1812.04770]

