The Sachdev－Ye－Kitaev model，scrambling and chaos

东南大学高能理论物理青年研讨会
Youth Symposium on theoretical high energy physics in Southeast University

20 August 2019
Masaki TEZUKA（手塚真樹）

Contents

- The Sachdev-Ye-Kitaev model
- Large- N solvability: conformal symmetry and maximal chaos
- Experimental proposal 1606.02454 (and realization)
- Random matrices (RM) and spectral form factor 1611.04650
- Deformation and suppression of maximal chaos 1707.02197
- Onset of RM behavior in scrambling systems 1803.08050
- k-local and local systems
- Random circuits
- Characterization of chaos in random systems 1702.06935
- Quantum Lyapunov spectrum 1809.01671
- Singular value statistics of two-point correlators 1902.11086

Other related works: 1801.03204, 1812.04770

Collaborators (in SYK-related papers) and references

- Jordan Saul Cotler ${ }^{a}$, Guy Gur-Ari ${ }^{a}$ (\rightarrow Google), Masanori Hanada (YITP \rightarrow Boulder \rightarrow Southampton)
- Joseph Polchinskib, Phil Saad ${ }^{a}$, Stephen H. Shenker ${ }^{a}$, Douglas Stanford ${ }^{a}$, Alexandre Streicher ${ }^{b}$
- Ippei Danshita (YITP \rightarrow Kindai), Hidehiko Shimada (OIST), Hrant Gharibyan ${ }^{\text {a }}$, Brian Swingle (Maryland)
- Antonio M. García-García (SJTU), Bruno Loureiro (Cambridge), Aurelio Romero-Bermúdez (Leiden)
- Pak Hang Chris Lau (MIT \rightarrow NTHU), Chen-Te Ma (SCNU \& Cape Town), Jeff Murugan (Cape Town \& KITP) ${ }^{a}$ Stanford ${ }^{b}$ UCSB

Danshita, Hanada, and MT, PTEP 2017, 083101 (arXiv:1606.02454) Cotler, Gur-Ari, Hanada, Polchinski, Saad, Shenker, Stanford, Streicher, and MT, JHEP 1705, 118 (2017) (arXiv:1611.04650)
Hanada, Shimada, and MT, Phys. Rev. E 97, 022224 (2018) (arXiv:1702.06935) García-García, Loureiro, Romero-Bermudez, and MT, PRL 120, 241603 (2018) (arXiv:1707.02197)

García-García and MT, Phys. Rev. B 99, 054202 (2019) (arXiv:1801.03204) Gharibyan, Hanada, Shenker, and MT, JHEP 1807, 124 (2018) (arXiv:1803.08050) Gharibyan, Hanada, Swingle, and MT, JHEP 1904, 082 (2019) (arXiv:1809.01671), submitted (arXiv:1902.11086)

The Sachdev-Ye-Kitaev model

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

cf. Sachdev-Ye model (1993)
[A. Kitaev, talks at KITP (2015)]
$\hat{\chi}_{a=1,2, \ldots, N}: N$ Majorana fermions $\left(\left\{\hat{\chi}_{a}, \hat{\chi}_{b}\right\}=\delta_{a b}\right)$
$J_{a b c d}:$ Gaussian random couplings $\left(\left\langle J_{a b c d}{ }^{2}\right\rangle=J^{2}=1\right)$

Two versions of the SYK model

N Majorana- or Dirac- fermions randomly coupled to each other
[Majorana version]

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c a} \hat{x}_{a} \hat{x}_{b} \hat{x}_{c} \hat{x}_{d}
$$

[A. Kitaev: talks at KITP
(Feb 12, Apr 7 and May 27, 2015)]
[Dirac version]
$\widehat{H}=\frac{1}{(2 N)^{3 / 2}} \sum_{i j ; k l} J_{i j ; k l} \hat{c}_{i}{ }^{\dagger} \hat{c}_{j}{ }^{\dagger} \hat{c}_{k} \hat{c}_{l}$
[A. Kitaev's talk]
[S. Sachdev: PRX 5, 041025 (2015)]
(The first paper by A. Kitaev on the SYK model:
Alexei Kitaev and S. Josephine Suh, arXiv:1711.08467 (JHEP05(2018)183); First papers by J. Ye on the SYK model: arXiv:1809.06667 and arXiv:1809.07577)

Note on the Dirac SYK model

[Dirac version]

$$
\widehat{H}=\frac{1}{(2 N)^{3 / 2}} \sum_{i j ; k l} J_{i j ; k l} \hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l}
$$

Studied for long time in the nuclear theory context

- [J. B. French and S. S. M. Wong, Phys. Lett. B 33, 449 (1970)]
- [O. Bohigas and J. Flores, Phys. Lett. B 34, 261 (1971)]
"Two-body Random Ensemble"

Why solvable in the $N \gg 1$ limit?

(after sample average $\langle\cdots\rangle_{\{ \}}$)
Free two-point function $G_{0}(t) \delta_{i j}=-\left\langle\mathrm{T} \psi_{i}(t) \psi_{j}(0)\right\rangle=-\frac{1}{2} \operatorname{sgn}(t) \delta_{i j}$
Perturbation expansion by interaction term

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

$\left\langle J_{a b c d}{ }^{2}\right\rangle_{\{J\}}=J^{2}$, independent Gaussian distribution
$\left\langle J_{a b c d} J_{a b c e}\right\rangle_{\{ \}\}}=0$ if $d \neq e \rightarrow$ Most diagrams average to zero
"Melon-type" diagrams dominate in large N

"Melon" diagrams dominate in the $N \gg 1$ limit

Dotted line connects same couplings

$$
G^{0} \Sigma G^{0} \Sigma G^{0} \Sigma G^{0}+\cdots
$$

Figure from [I. Danshita, M. Tezuka, and M. Hanada: Butsuri 73(8), 569 (2018)]

Feynman diagrams

[J. Polchinski and V. Rosenhaus, JHEP 1604 (2016) 001]
[J. Maldacena and D. Stanford, PRD 94, 106002 (2016)]
$\widehat{H}=\frac{\sqrt{3!}}{N 3 / 2} \sum_{1 \leq a<b<c<d \leq N} \operatorname{Jabcd}^{\hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}, ~}$

$$
\begin{aligned}
& \left\{\hat{\chi}_{a}, \hat{\chi}_{b}\right\}=\delta_{a b} \\
& \left\langle J_{a b c d}{ }^{2}\right\rangle=J^{2}=1
\end{aligned}
$$

$$
\sum_{j k l}\left\langle J_{i j k l} J_{j k l m}\right\rangle_{\hat{U}\}}=\frac{N^{3}}{3!} \delta_{i m}
$$

$O\left(N^{0}\right)$ contribution
$O\left(N^{-2}\right)$ contribution

Reparametrization symmetry

$$
\begin{aligned}
& G\left(1-\Sigma G_{0}\right)=G_{0} \\
& G^{-1}=G_{0}^{-1}-\Sigma \\
& G(i \omega)^{-1}=i \omega-\Sigma(i \omega) \quad \Sigma=J^{2} G^{3}
\end{aligned}
$$

Low energy ($\omega, T \ll J$): ignore $i \omega$ and we have

$$
\int d t G\left(t_{1}, t\right) \Sigma\left(t, t_{2}\right)=-\delta\left(t_{1}, t_{2}\right)
$$

Invariant under imaginary time reparametrization

$$
\begin{array}{rlrl}
\tau & =f(\sigma), \\
G\left(\tau_{1}, \tau_{2}\right) & =\left[f^{\prime}\left(\sigma_{1}\right) f^{\prime}\left(\sigma_{2}\right)\right]^{-1 / 4} \frac{g\left(\sigma_{1}\right)}{g\left(\sigma_{2}\right)} G\left(\sigma_{1}, \sigma_{2}\right), & \beta \\
\tilde{\Sigma}\left(\tau_{1}, \tau_{2}\right) & =\left[f^{\prime}\left(\sigma_{1}\right) f^{\prime}\left(\sigma_{2}\right)\right]^{-3 / 4} \frac{g\left(\sigma_{1}\right)}{g\left(\sigma_{2}\right)} \tilde{\Sigma}\left(\sigma_{1}, \sigma_{2}\right), & \\
\hline
\end{array}
$$

Large- N saddle point solution

$\int d t G\left(t_{1}, t\right) \Sigma\left(t, t_{2}\right)=-\delta\left(t_{1}, t_{2}\right)$
(Derived in replica formalism; assume replica symmetry)

$$
G_{s}\left(\tau_{1}-\tau_{2}\right) \sim\left(\tau_{1}-\tau_{2}\right)^{-1 / 2} \quad, \quad \Sigma_{s}\left(\tau_{1}-\tau_{2}\right) \sim\left(\tau_{1}-\tau_{2}\right)^{-3 / 2}
$$

Not invariant under arbitrary reparametrization, but invariant under

$$
f(\tau)=\frac{a \tau+b}{c \tau+d} \quad, \quad a d-b c=1 .
$$

Symmetry broken to $S L(2, R)$. cf. isometry group of AdS_{2} [see e.g. A. Strominger, hep-th/9809027]
[J. Maldacena and D. Stanford, Phys. Rev. D 94, 106002 (2016)] Study of the Goldstone modes: e.g. [D. Bagrets, A. Altland, and A. Kamenev, Nucl. Phys. B 911, 191 (2016)]

SYK: Nearly $\mathrm{CFT}_{1}{ }^{\text {"NCFT }}{ }_{1}$ " emergent conformal gauge invariance [Sachdev, PRX 5, 041025 (2015)]

Definition of Lyapunov exponent using out-of-time-order correlators

$$
F(t)=\left\langle\hat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \hat{W}(t) \hat{V}(0)\right\rangle \quad W(t)=\mathrm{e}^{i H t} W \mathrm{e}^{-i H t}
$$

Classical:
Infinitesimally different initial states

Consider operators V and W,

$$
\begin{aligned}
C(t) & \left.=\left.\langle |[W(t), V(t=0)]\right|^{2}\right\rangle \\
& =2(1-\operatorname{Re} F(t))
\end{aligned}
$$

quantifies strength of quantum scrambling
"Black holes are fastest quantum scramblers"
[P. Hayden and J. Preskill 2007] [Y. Sekino and L. Susskind 2008] [Shenker and Stanford 2014]

Chaos bound $\lambda_{\mathrm{L}}=2 \pi k_{\mathrm{B}} T / \hbar$ [J. Maldacena, S. H. Shenker, and D. Stanford, JHEP08(2016)106] saturated by large-N SYK model [Maldacena and Stanford, PRD 94, 106002 (2016)]

Out-of-time-ordered correlators (OTOCs)

$$
\left\langle\hat{x}_{i}\left(t_{1}\right) \hat{\chi}_{i}\left(t_{2}\right) \hat{\chi}_{j}\left(t_{3}\right) \hat{\chi}_{j}\left(t_{4}\right)\right\rangle
$$

Regularized OTOC can be calculated for large-N SYK model, satisfies the chaos bound $\lambda_{\mathrm{L}}=2 \pi k_{\mathrm{B}} T / \hbar$ at low T limit

$$
\Gamma\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=\Gamma_{0}\left(t_{1}, t_{2}, t_{3}, t_{4}\right)+\int d t_{a} d t_{b} \Gamma\left(t_{1}, t_{2}, t_{a}, t_{b}\right) K\left(t_{a}, t_{b}, t_{3}, t_{4}\right)
$$

Holographic connection to gravity

$$
H=\frac{1}{(2 N)^{3 / 2}} \sum_{i, j, k, \ell=1}^{N} J_{i j ; k \ell} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{\ell}
$$

$$
\mathcal{Q}=\frac{1}{N} \sum_{i}\left\langle c_{i}^{\dagger} c_{i}\right\rangle
$$

$$
-\left\langle c_{i}(\tau) c_{i}^{\dagger}(0)\right\rangle \sim\left\{\begin{array}{cc}
-\tau^{-1 / 2} & \tau>0 \\
e^{-2 \pi \mathcal{E}}|\tau|^{-1 / 2} & , \tau<0
\end{array}\right.
$$

Known "equation of state" determines \mathcal{E} as a function of \mathcal{Q}

Microscopic zero temperature entropy density \mathcal{S} obeys

$$
\frac{\partial \mathcal{S}}{\partial \mathcal{Q}}=2 \pi \mathcal{E}
$$

Einstein-Maxwell theory

$$
+ \text { cosmological constant }
$$

Horizon area \mathcal{A}_{h};

$$
\mathrm{AdS}_{2} \times R^{d}
$$

$d s^{2}=\left(d \zeta^{2}-d t^{2}\right) / \zeta^{2}+d \vec{x}^{2}$
Gauge field: $A=(\mathcal{E} / \zeta) d t$
$\zeta=\infty$
$\mathcal{L}=\bar{\psi} \Gamma^{\alpha} D_{\alpha} \psi+m \bar{\psi} \psi$
$-\langle\psi(\tau) \bar{\psi}(0)\rangle \sim\left\{\begin{array}{cc}-\tau^{-1 / 2}, & \tau>0 \\ e^{-2 \pi \mathcal{E}}|\tau|^{-1 / 2}, & \tau<0 .\end{array}\right.$
"Equation of state" relating \mathcal{E} and \mathcal{Q} depends upon the geometry of spacetime far from the AdS_{2}

Black hole thermodynamics (classical general relativity) yields

$$
\frac{\partial \mathcal{S}_{\mathrm{BH}}}{\partial \mathcal{Q}}=2 \pi \mathcal{E}
$$

[S. Sachdev, Phys. Rev. X 5, 041025 (2015)]

Different models with similar solutions

$$
\begin{gathered}
S_{\text {Gurau-Witten }}=\int d t\left(\frac{i}{2} \psi_{A}^{a b c} \partial_{t} \psi_{A}^{a b c}+g \psi_{0}^{a b c} \psi_{1}^{a d e} \psi_{2}^{f b e} \psi_{3}^{f d c}\right) \begin{array}{l}
\text { "An SYK-Like Model Without Disorder" } \\
\text { E. Witten, arXiv:1610.09758 }
\end{array} \\
I=\int \mathrm{d} t\left(\frac{\mathrm{i}}{2} \sum_{i} \psi_{i} \frac{\mathrm{~d}}{\mathrm{~d} t} \psi_{i}-\mathrm{i}^{q / 2 / 2} j \psi_{0} \psi_{1} \ldots \psi_{D}\right) \\
\text { "Uncolored Random Tensors, Melon Diagrams, and the SYK Models" } \\
\text { I. R. Klebanov and G. Tarnopolsky, PRD 95, } 046004 \text { (2017). } \\
\begin{array}{l}
\text { Y. Gu, X.-L. Qi, and D. Stanford, "Local criticality, diusion and chaos }
\end{array} \\
\begin{array}{l}
\text { in generalized Sachdev-Ye-Kitaev models," JHEPO5 (2017) 125; }
\end{array} \\
\begin{array}{l}
\text { X.-Y. Song, C.-M. Jian, and L. Balents, "Strongly Correlated Metal } \\
\text { Built from Sachdev-Ye-Kitaev Models," PRL 119, } 216601 \text { (2017). }
\end{array}
\end{gathered}
$$

See review: V. Rosenhaus: "An introduction to the SYK model" arXiv:1807.03334
cf. K. Okuyama: "Replica symmetry breaking in random matrix model: a toy model of wormhole networks" arXiv:1903.11776

Proposal for experiment

© Not limited to classical limit
\rightarrow Several supporting evidences
e.g. check of the leading gravity
correction for the black hole mass
[M. Hanada, Y. Hyakutake, G. ishiki, and J. Nishimura, Science 344, 882 (2013)]

Many "AdS/CMT"
applications
This work:
approach quantum gravity by realizing corresponding non-gravity models in cold gases

Our proposal: coupled atom-molecule model [arXiv:1606.02454]
Consider atomic levels $i, j, \ldots=1,2, \ldots, N$ coupled to a molecule state m_{1}

$$
\begin{aligned}
\hat{H}_{\mathrm{m} 1}=\nu \hat{m}^{\dagger} \hat{m}+\sum_{\substack{i . i \\
g_{i j}=\frac{1}{2} \operatorname{sgn}(j-i)}} g_{i j}\left(\hat{m}^{\dagger} \hat{c}_{j} \hat{c}_{i}+\text { h.c. } \Omega_{i, j}(\mathbf{r}) w_{m}(\boldsymbol{r}) w_{a, i}(\boldsymbol{r}) w_{a, j}(\boldsymbol{r})\right.
\end{aligned}
$$

$$
s=1,2, \ldots, n_{s}
$$

Consider multiple molecular states; assume they are short-lived
\rightarrow integrate them out and obtain the effective model for atoms

$$
\hat{H}_{\mathrm{eff}}=\sum_{s, i, j, k, l} \frac{g_{s, i j} g_{s, k l}}{\nu_{s}} \hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l}
$$

Optical lattice setup in our proposal

 A double-well optical lattice (no degeneracy in the band levels) ${ }^{2}$ with ${ }^{6} \mathrm{Li}$ (large recoil energy)Possible to satisfy required conditions

$$
\begin{aligned}
& \max \left(t_{i}\right) \lesssim \hbar / \tau_{\exp } \ll J, \\
& \max \left(\hbar \Gamma_{\mathrm{PA}}, \hbar \Gamma_{\mathrm{ms}, s}\right) \ll\left|\nu_{s}\right| \ll \Delta_{\min }, \text { for all } s, \\
& \Delta_{\max }<\Delta_{\mathrm{MB}}<\tilde{\Delta}, \\
& \left|\nu_{s}\right| \ll\left|U_{s, s^{\prime}}\right| \text {, for all } s \text { and } s^{\prime}, \\
& \left|U_{s, s^{\prime}}\right|<\Delta_{\min } \text { or } \Delta_{\max }<\left|U_{s, s^{\prime}}\right| \text {, for all } s \text { and } s^{\prime} .
\end{aligned}
$$

Realizing real Dirac SYK model

$$
\hat{H}_{\mathrm{eff}}=\sum_{s, i, j, k, l} \frac{g_{s, i j} g_{s, k} l}{\nu_{s}} \hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l} \quad s=1,2, \ldots, n_{s}
$$

(For simplicity we take $v_{s}=(-1)^{s} \sqrt{n_{s}} \sigma_{s}$)

Can be shown to approach the real Dirac version of the SYK model as $n_{s} \rightarrow \infty$.

$$
\hat{H}=\frac{1}{(2 N)^{3 / 2}} \sum_{i j k l} J_{i j ; k l} \hat{c}_{i}^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l},
$$

Gaussian J reproduced

$$
J_{i j ; k l}=-J_{j i ; k l}=-J_{i j ; k k},
$$

Real SYK:

$$
J_{i j ; k l}=J_{k l, i j}
$$

Physical quantities coincide with those for complex SYK

$$
\overline{\left|J_{i j ; k}, k\right|^{2}}= \begin{cases}J^{2} & (\{i, j\} \neq\{k, l\}) \\ 2 J^{2} & (\{i, j\}=\{k, l\})\end{cases}
$$ in $N \rightarrow \infty$ limit

Out-of-time-order correlation measurement

Interferometric protocol proposed in
B. Swingle et al.: PRB 94, 040302 (2016)

$|\psi\rangle_{\mathcal{S}}$: Initial state of the probed system
$|0\rangle_{\mathcal{C}},|1\rangle_{\mathcal{C}}$: states of the control qubit

$$
\widehat{W}(t)=\mathrm{e}^{i H t} \widehat{W} \mathrm{e}^{-i H t}
$$

Create the cat state

$$
|\Psi\rangle=\widehat{W}(t) \widehat{V}|\psi\rangle_{S}|1\rangle_{C}+\widehat{V} \widehat{W}(t)|\psi\rangle_{S}|0\rangle_{C}
$$

$$
F(t)=\left\langle\hat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \hat{W}(t) \hat{V}(0)\right\rangle
$$

by applying

$$
\widehat{I_{S}} \otimes|0\rangle\left\langle\left. 0\right|_{C}+\widehat{V} \otimes \mid 1\right\rangle\left\langle\left. 1\right|_{C}, \widehat{W}(t) \otimes \widehat{I_{C}}\right.
$$ and $\hat{V} \otimes|0\rangle\left\langle\left. 0\right|_{C}+\widehat{I}_{S} \otimes \mid 1\right\rangle\left\langle\left. 1\right|_{C}\right.$ in this order, then measure the qubit to find $\operatorname{Re} F(t)$ and $\operatorname{Im} F(t)$.

\rightarrow Implementation of this protocol in our model

Our qubit C :
A single particle in a double well using a qubit on additional optical double well [1606.02454]

Proposals for experimental realization

Zero energy states: Majorana fermions

D. I. Pikulin and M. Franz, "Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System", PRX 7, 031006 (2017)

Proposals for experimental realization

Anffany Chen, R. Ilan, F. de Juan, D.I. Pikulin, M. Franz,
"Quantum holography in a graphene flake with an irregular boundary", arXiv:1802.00802 [PRL 121, 036403 (2018)]

NMR experiment for the SYK model

"Quantum simulation of the non-fermi-liquid state of Sachdev-
Ye-Kitaev model" Zhihuang Luo, Yi-Zhuang You, Jun Li, Chao-
Ming Jian, Dawei Lu, Cenke Xu, Bei Zeng and Raymond
Laflamme, npj Quantum Information 5, 53 (2019)

$$
H=\frac{J_{i j k l}}{4!} \chi_{i} \chi_{j} \chi_{k} \chi_{l}+\frac{\mu}{4} C_{i j} C_{k l} \chi_{i} \chi_{j} \chi_{k} \chi_{l}
$$

$$
\chi_{2 i-1}=\frac{1}{\sqrt{2}} \sigma_{x}^{1} \sigma_{x}^{2} \cdots \sigma_{x}^{i-1} \sigma_{z}^{i}, \chi_{2 i}=\frac{1}{\sqrt{2}} \sigma_{x}^{1} \sigma_{x}^{2} \cdots \sigma_{x}^{i-1} \sigma_{y}^{i}
$$

$$
H=\sum_{s=1}^{70} H_{s}=\sum_{s=1}^{70} a_{i j k l}^{s} \sigma_{\alpha_{i}}^{1} \sigma_{\alpha_{j}}^{2} \sigma_{\alpha_{k}}^{3} \sigma_{\alpha_{l}}^{4}
$$

$$
e^{-i H \tau}=\left(\prod_{s=1}^{70} e^{-i H_{s} \tau / n}\right)^{n}+\sum_{s<s^{\prime}} \frac{\left[H_{s}, H_{s^{\prime}}\right] \tau^{2}}{2 n}
$$

$$
+O\left(|a|^{3} \tau^{3} / n^{2}\right)
$$

The Sachdev-Ye-Kitaev model

N Majorana- or Dirac- fermions randomly coupled to each other
[Majorana version]

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

[A. Kitaev: talks at KITP
(Feb 12, Apr 7 and May 27, 2015)]
[Dirac version]
$\widehat{H}=\frac{1}{(2 N)^{3 / 2}} \sum_{i j ; k l} J_{i j ; k l} \hat{c}_{i}{ }^{\dagger} \hat{c}_{j}^{\dagger} \hat{c}_{k} \hat{c}_{l}$
[A. Kitaev's talk]
[S. Sachdev: PRX 5, 041025 (2015)]

- Solvable in the large N limit, Sachdev-Ye "spin liquid" ground state
- Nearly conformal symmetric at low temperature ("emergent ...")
- Realizes the Maldacena-Shenker-Stanford chaos bound $\lambda_{\mathrm{L}}=2 \pi k_{\mathrm{B}} T / \hbar$
- Holographically corresponds to a quantum black hole?
- Experimentally realized for small N

Generalizations: q-fermion interactions "SYK ", supersymmetric SYK, lattice of SYK lands; etc.

The Bohigas-Giannoni-Schmit conjecture

Assume quantum mechanical systems with a classical limit

"Spectral statistics of chaotic systems can be described as a random matrix"
O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984);
J. de Phys. Lett. 45, 1015 (1984).

Justifications:

Non-linear sigma-model
(Andreev 1993, Altland 2015)
Gutzwiller trace formula in
terms of periodic orbits
(Berry 1985, Gutzwiller 1990,
Sieber, Richter, Braun, Muller,
Heusler, ...)

Also more examples including systems without clear classical version

Random matrices: level repulsion and spectral rigidity

Assume unfolded spectrum (rescaled so that average distance $=1$)

Spectrum unfolding

Short range

- $P(s)$: Distribution of normalized level separation s
- $\quad \Sigma^{2}$ statistics: variance of number of levels in the energy range with M levels on average
- $\langle r\rangle$: Average of neighboring gap ratio

$$
r=\frac{\min \left(e_{i+1}-e_{i}, e_{i+2}-e_{i+1}\right)}{\max \left(e_{i+1}-e_{i}, e_{i+2}-e_{i+1}\right)}
$$

- Spectral form factor $g(\beta, t)$: Fourier transform of the density of states

SYK: Exact diagonalization and fermion parity

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

Consider $N_{\mathrm{D}}=N / 2$ complex fermions $\hat{c}_{j}=\frac{\left(\chi_{2 j-1}+i \chi_{2 j}\right)}{\sqrt{2}}, j=1,2, \ldots, N_{\mathrm{D}}$
र $\chi \chi \chi$ preserves parity of complex fermion number
Each (even, odd) sector: $2^{N_{\mathrm{D}}-1}(=65536$ for $N=34)$ states
$N=34:$
$\binom{17}{0}+\binom{17}{2}+\binom{17}{4}=2517$ (~3.8 \%) non-zero matrix elements on each row
$2^{32} \sim 4$ billion complex matrix elements: 64 GiB of memory
\widehat{H}_{E}
0
$0 \quad \widehat{H}_{0}$
\rightarrow Can be fully diagonalized numerically
${ }^{*}\left(2^{48} \sim 281\right.$ trillion $)$ complex number operations, ~ 5 samples / day on a single node (~ 10 RMB / one $N=34$ sample or $2^{12} N=26$ samples)
cf. Lanczos code for up to $N=46$ by G. Gur-Ari https://github.com/guygurari/syk using DMRG-like ideas (see JHEP 1811, 070 (2018))

Diagonalization of the Hamiltonian \rightarrow Eigenvalue spectrum

cf. Large N [A. M. García-García and J. J. M. Verbaarschot: 1610.03816]

Gaussian random matrices

$a_{i j}=a_{j i}^{*}$

Gaussian distribution

Joint distribution function for eigenvalues $\left\{e_{j}\right\}$

$$
p\left(e_{1}, e_{2}, \ldots, e_{K}\right) \propto \prod_{1 \leq i<j \leq K}\left|e_{i}-e_{j}\right|^{\beta} \prod_{i=1} e^{-\beta K e_{i}^{2} / 4}
$$

- $P(s)$: Distribution of normalized level separation $s_{j}=\frac{e_{j+1}-e_{j}}{\Delta(\bar{e})}$ GOE/GUE/GSE: $P(s) \propto s^{\beta}$ at small s, has $e^{-s^{2}}$ tail Uncorrelated (Poisson): $P(s)=e^{-s}$
- $\langle r\rangle$: Average of neighboring gap ratio

$$
r=\frac{\min \left(e_{i+1}-e_{i}, \quad e_{i+2}-e_{i+1}\right)}{\max \left(e_{i+1}-e_{i}, \quad e_{i+2}-e_{i+1}\right)}
$$

Time-dependent partition function and energy scale

$$
\mathcal{H}_{\mathrm{M}}=\sum_{a, b, c, d}^{N} J_{a b c a} \widehat{\chi_{a} \widehat{x_{b}} \widehat{\chi_{c}} \widehat{\chi_{d}}}
$$

- Analytical continuation of partition function $Z(\beta)$
- Fourier transform of $\rho(E)$ modified by temperature

Spectral form factor

Similar to dense random matrix

Plateau height $\quad g(\beta, t)=\frac{\|\left(Z(, t)()^{2}\right)}{(Z(\beta))^{2}}$ determined by $Z(\beta)$

For each sample, consider the long time average of

$$
\begin{gathered}
|Z(\beta, t)|^{2}=\sum_{m, n} \mathrm{e}^{-\beta\left(E_{m}+E_{n}\right)} \mathrm{e}^{\mathrm{i}\left(E_{m}-E_{n}\right) t} \\
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t|Z(\beta, t)|^{2}=\sum_{E} N_{E}^{2} \mathrm{e}^{-2 \beta E}=N_{E} Z(2 \beta)
\end{gathered}
$$

(if degeneracy of E : N_{E} is independent of E)
Because $Z \sim \mathrm{e}^{a S}(a>0)$, long-time average $N_{E} \frac{Z(2 \beta)}{Z(\beta)^{2}}$ will be $\sim \mathrm{e}^{-a S}$ (non-perturbative in $1 / N$)

Late time: governed by $g_{\mathrm{c}}(t)$

Dense random matrix reproduces the late-time ramp \& plateau behavior
[You, Ludwig, Xu: arXiv:1602.06964] BDI class, N_{x} Majorana fermions

N mod 8 classification of Majorana SYK $_{q=4}$

$$
\widehat{H}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

$$
\text { Introduce } N / 2 \text { complex fermions } \hat{c}_{j}=\frac{\left(\hat{\chi}_{2 j-1}+\mathrm{i} \hat{\chi}_{2 j}\right)}{\sqrt{2}}
$$

$$
\hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d} \text { respects the complex fermion parity }
$$

$N \equiv 0,4$$(\bmod 8)$	Even (\widehat{H}_{E}) and odd (\widehat{H}_{O}) sectors: $L=2^{N / 2-1}$ dimensions					
\widehat{H}_{E}	N mod 8	0	2	4	6	$\hat{X}=\hat{K} \prod_{j=1}\left(\hat{c}_{j}^{\dagger}+\hat{c}_{j}\right)$
	η	-1	+1	+1	-1	$\hat{X} \hat{c}_{j} \hat{X}=\eta \hat{c}_{j}^{\dagger} \quad[\hat{X}, \widehat{H}]=0$
	\hat{X}^{2}	+1	+1	-1	-1	
$N \equiv 2,6 \hat{H}_{\mathbf{O}}$	\hat{X} maps H_{E} to	$H_{\text {E }}$	H_{O}	H_{E}	H_{O}	[You, Ludwig, and Xu, PRB 2017]
	Class	AI	A+A	All	A+A	[Fadi Sun and Jinwu Ye, 1905.07694] for SYK ${ }_{q}$, supersymmetric SYK
	Gaussian ensemble	GOE	gue	GSE	GUE	

SYK: sparse matrix, but energy spectral statistics strongly resemble that of the corresponding (dense) Gaussian ensemble
[Cotler, ..., MT, JHEP 2017]

The SYK spectral form factor: N dependence

Dip time

Correlation function

$$
G(t)=\left\langle\chi_{a}(t) \chi_{a}(0)\right\rangle
$$

Dip-ramp-plateau structure similar to $g(\beta, t)$ for $N \equiv 2(\bmod 8)$

$N \equiv 0(\bmod 8): \widehat{X}$ maps each charge parity sector to itself and $\hat{X}^{2}=1$ (no protected degeneracy) $N \equiv 2(\bmod 8): \hat{X}$ maps each sector to the other and \langle even $| \chi \mid$ odd \rangle finite
$N \equiv 4(\bmod 8): \hat{X}$ maps each charge parity sector to itself and $\hat{X}^{2}=-1$ (only internal degeneracy) $N \equiv 6(\bmod 8): \hat{X}$ maps each sector to the other but \langle even $| \chi \mid$ odd $\rangle=0$

$\mathrm{SYK}_{4}+\mathrm{SYK}_{2}$: Large-N calculation for OTOC

A. M. Garcia-Garcia, B. Loureiro, A. Romero-Bermudez, and MT, PRL 120, 241603 (2018)

Deviation from the chaos bound as SYK_{2} component is introduced

Contents

- The Sachdev-Ye-Kitaev model
- Large- N solvability: conformal symmetry and maximal chaos
- Experimental proposal 1606.02454 (and realization)
- Random matrices (RM) and spectral form factor 1611.04650
- Deformation and suppression of maximal chaos 1707.02197
- Onset of RM behavior in scrambling systems 1809.01671
- k-local and local systems
- Random circuits
- Characterization of chaos in random systems
- Quantum Lyapunov spectrum 1809.01671
- Singular value statistics of two-point correlators 1902.11086

Where does the ramp start?

'Slope' hides the beginning of the ramp

Energy spectrum of the SYK model

'Slope' depends on the edge of the density of states

Spectral form factor

$$
|Y(\alpha, t)|^{2}=\left|\sum_{i} e^{-\alpha E_{i}^{2}-i t E_{i}}\right|^{2}
$$

$t_{\text {min }}$: almost constant? $\left(8<t_{\min }<15\right.$ for $\left.10 \leq N \leq 34\right)$

Scrambling

After some time, non-local measurements are needed for information on the local perturbation at $t=0$ ("information scrambling")

Scrambling

After $t=t_{s}$, information has been scrambled with the entire system 'scrambling time'

Diffusion

Conserved quantity (e.g. charge) diffuses, eventually (after diffusion time t_{d}, also called the Thouless time) will be uniformly distributed

Scrambling or diffusion?

G. Gharibyan, M. Hanada, S. H. Shenker, and MT,
 JHEP 1807, 124 (2018) (arXiv:1803.08050)

In this talk, we show the following examples:

- Known case: band matrix (single particle hopping)
- Numerical results on spin systems
see also: Random circuit-based discussion in our paper
- RMT universality observed after 'ramp time' tramp
- Physical interpretation?
- Relationship to BH information paradox? scrambling? diffusion?
- Our results: ramp time seems to be determined by diffusion, not by scrambling

Random band matrix

see L. Erdös and A. Knowles, "The Altshuler-Shklovskii Formulas for Random Band Matrices I: the Unimodular Case," Comm. Math. Phys. 333, 1365 (2015) for derivation of the scaling
(Single particle hopping: diffusion is defined)

 $\stackrel{L}{\stackrel{L}{\square}}$

$S=1 / 2$ spin chain

$$
\begin{array}{r}
H=\frac{1}{4} \sum_{i=1}^{N-1} \sum_{\alpha, \beta=0}^{3} J_{i}^{\alpha \beta} \sigma_{i}^{\alpha} \otimes \sigma_{i+1}^{\beta} \\
\left\{: \sigma^{0}, \sigma^{1}, \sigma^{2}, \sigma^{3}\right\}=\{I, X, Y, Z\}
\end{array}
$$

Better overlap with diffusion time $\left(N^{2}\right)$

Contents

- The Sachdev-Ye-Kitaev model
- Large- N solvability: conformal symmetry and maximal chaos
- Experimental proposal 1606.02454 (and realization)
- Random matrices (RM) and spectral form factor 1611.04650
- Deformation and suppression of maximal chaos 1707.02197
- Onset of RM behavior in scrambling systems 1803.08050
- k-local and local systems
- Random circuits
- Characterization of chaos in random systems 1702.06935
- Quantum Lyapunov spectrum 1809.01671
- Singular value statistics of two-point correlators 1902.11086

Other related works: $1801.03204,1812.04770$

How to characterize quantum chaos?

$$
i \frac{d}{d t}|\psi\rangle=\widehat{H}|\psi\rangle \quad|\psi(t)\rangle=\widehat{\mathrm{T}} \exp \left[-i \int_{0}^{t} \widehat{H}\left(t^{\prime}\right) d t\right]|\psi(t=0)\rangle=\exp (-i \widehat{H} t)|\psi(t=0)\rangle
$$

Linear dynamics
Unitary time evolution

- Long time: energy level statistics Correlation between levels, as in random matrices

Short range: Normalized level separation distribution, gap ratio, ...
Longer range: Number variance, spectral form factor, ...
cf. Bohigas-Giannoni-Schmit conjecture

- Shorter time: out-of-time correlator

Classically,

$$
\left\{x_{i}(t), p_{j}(0)\right\}_{\mathrm{PB}}^{2}=\left(\frac{\partial x_{i}(t)}{\partial x_{j}(0)}\right)^{2} \rightarrow e^{2 \lambda_{\mathrm{L}} t} \text { for large } t
$$

Quantum version:

$$
\begin{aligned}
& \text { OTOC: } \left.C_{T}(t)=\left.\langle |[\widehat{W}(t), \hat{V}(t=0)]\right|^{2}\right\rangle \\
& \quad=\left\langle\widehat{W}^{\dagger}(t) \widehat{V}^{\dagger}(0) \widehat{W}(t) \widehat{V}(0)\right\rangle+\cdots
\end{aligned}
$$

Numerically

\rightarrow limited to small systems
\rightarrow Hard to see exponential time dependence

Finite-time Lyapunov spectrum in classical chaotic systems

Classical systems with K degrees of freedom
Deviation at t : linear in initial deviation

Infinitesimal deviation in initial condition

$$
\delta \phi_{i}(0)
$$

- Usually we consider the $t \rightarrow \infty$ limit, chaotic if $\max \left(\lambda_{k}\right)>0$
- We focus on finite time behavior

Spectrum $\left\{\lambda_{k}(t)\right\}_{k=1}^{K}$ depends on system details
\rightarrow Any universality for chaotic cases?
In many chaotic systems, for large K, the Lyapunov spectrum behaves like that of a Gaussian random matrix at some time scale.

Numerical evidences

Level separation distribution $P(s)$ for the unfolded Lyapunov spectrum approaches that of random matrix eigenvalues $P_{\mathrm{RMT}}(s)$ at some time scale if the degree of freedom K is large, so does the spectral form factor.

Models: logistic map, Lorenz attractor, DO brane matrix model (without fermions) and its mass deformation, random band matrix products

cf. Lyapunov spectrum for random coupling [S. K. Patra and A. Ghosh]

- Kuramoto model [PRE 93, 032208 (2016)],
- Map networks [EPL 117, 60002 (2017)]

Strong coupling \Leftrightarrow GOE
Weak coupling \Leftrightarrow Poisson

Quantum Lyapunov spectrum

Finite-time classical Lyapunov spectrum: obeys RMT statistics for chaos
[Hanada, Shimada, and MT: PRE 97, 022224 (2018)]
Singular values of $M_{i j}=\left(\frac{\partial x_{i}(t)}{\partial x_{j}(0)}\right)$ at finite $t:\left\{s_{k}(t)\right\}=\left\{e^{\lambda_{k} t}\right\}$

$$
L=\left\{x_{i}(t), p_{j}(0)\right\}_{\mathrm{PB}}^{2}=\left(\frac{\partial x_{i}(t)}{\partial x_{j}(0)}\right)^{2} \rightarrow e^{2 \lambda_{\mathrm{L}} t} \text { for large } t
$$

$$
\text { отос: } \left.C_{T}(t)=\left.\langle |[\widehat{W}(t), \widehat{V}(t=0)]\right|^{2}\right\rangle=\left\langle\widehat{W}^{\dagger}(t) \hat{V}^{\dagger}(0) \widehat{W}(t) \widehat{V}(0)\right\rangle+\cdots
$$

Quantum Lyapunov spectrum: Define $\widehat{M}_{a b}(t)$ as (anti)commutator of $\widehat{O}_{a}(t)$ and $\widehat{O}_{b}(0)$

$$
\widehat{L}_{a b}(t)=\left[\widehat{M}(t)^{\dagger} \widehat{M}(t)\right]_{a b}=\sum_{j=1}^{N} \widehat{M}_{j a}(t)^{\dagger} \widehat{M}_{j b}(t)
$$

For $N \times N$ matrix $\langle\phi| \hat{L}_{a b}(t)|\phi\rangle$, obtain singular values $\left\{s_{k}(t)\right\}_{k=1}^{N}$.
The Lyapunov spectrum is defined as $\left\{\lambda_{k}(t)=\frac{\log s_{k}(t)}{2 t}\right\}$.

Quantum Lyapunov spectrum for SYK model + modification

- Define $\hat{L}_{a b}(t)=\sum_{j=1}^{N} \widehat{M}_{j a}(t) \widehat{M}_{j b}(t)$ for time-dependent anticommutator $\widehat{M}_{a b}(t)=\left\{\hat{\chi}_{a}(t), \hat{\chi}_{b}(0)\right\}$.
- Obtain the singular values $\left\{a_{k}(t)\right\}_{k=1}^{K}$ of $\langle\phi| \hat{L}_{a b}(t)|\phi\rangle$
- Quantum Lyapunov spectrum: $\left\{\lambda_{k}(t)=\frac{\log a_{k}(t)}{2 t}\right\}_{k=1,2, \ldots, K}$ (also dependent on state ϕ)

Growth of (largest Lyapunov exponent)*time

Kolmogorov－Sinai entropy vs

entanglement entropy（纠缠摘）production

Kolmogorov－Sinai entropy h_{KS}
＝（sum of positive λ ）
＝entropy production rate

Coarse－grained entropy
$=\log (\#$ of cells covering the region） $\sim($ sum of positive $\lambda) t$

Initial state with $S_{\mathrm{EE}}=0$ ：

$$
|\psi(t=0)\rangle=|000 \ldots 000\rangle
$$

in the complex fermion basis

$$
\hat{c}_{j}=\frac{\left(\chi_{2 j-1}+\mathrm{i} \chi_{2 j}\right)}{\sqrt{2}}
$$

Initial state with $S_{\mathrm{EE}}=0$ ：

$$
\begin{array}{cc}
\mathrm{B} \quad \rho_{\mathrm{A}}(t)=\operatorname{Tr}_{\mathrm{B}} \rho(t), \rho(t)=|\psi(t)\rangle\langle\psi(t)| \\
& S_{\mathrm{EE}}(t)=-\operatorname{Tr} \rho_{\mathrm{A}}(t) \log \left(\rho_{\mathrm{A}}(t)\right)
\end{array}
$$

Fastest entropy production?

SYK ${ }_{4}$ limit

- λ_{N} and $\lambda_{\text {OTOC }}=\frac{1}{2 t} \log \left(\frac{1}{N} \sum_{i=1}^{N} e^{2 \lambda_{i} t}\right)$ approach each other; difference decreases as $1 / N$
- Same for λ_{N} and λ_{1} :
all exponent \rightarrow single peak
- All saturate the MSS bound at strong coupling (low T) limit
- Growth rate of entanglement entropy
 $\sim h_{\mathrm{KS}}=$ sum of positive (all) λ_{i}
\rightarrow [conjecture] SYK model: not only the fastest scramblers, but also fastest entropy generators

Spectral statistics of quantum Lyapunov spectrum: SYK

$K=0.01(\bigcirc)$:
Remains GUE for long time

QLS: The case of the random field XXZ model

$$
\widehat{H}=\sum_{i}^{N} \widehat{S}_{i} \cdot \widehat{S}_{i+1}+\sum_{i}^{N} h_{i} \widehat{S_{i}^{z}} \quad h_{i}: \text { uniform distribution }[-W, W]
$$

Many-body localization (MBL) transition at $W=W_{c} \sim 3.5$
(though recently disputed; e.g. $W_{\mathrm{c}} \geq 5$ proposed in E. V. H. Doggen et al., [1807.05051] using large systems with time-dependent variational principle \& machine learning)
e.g. M. Serbyn, Z. Papic, and D. A. Abanin,

Phys. Rev. X 5, 041047 (2015) (arXiv:1507.01635)
Matrix element of local perturbation
$\mathcal{G}(\varepsilon, L)=\ln \frac{\left|V_{n, n+1}\right|}{E_{n+1}^{\prime}-E_{n}^{\prime}}$
Energy separation of neighboring energy eigenstates

Spectral statistics of QLS for random field XXZ

$$
\widehat{H}=\sum_{i}^{N} \widehat{S}_{i} \cdot \widehat{S}_{i+1}+\sum_{i}^{N} h_{i} \widehat{S_{i}^{Z}} \quad h_{i}: \text { uniform distribution }[-W, W] \quad \widehat{M}_{a b}(t)=\left[\widehat{S_{a}^{+}}(t), \widehat{S_{b}^{-}}(0)\right]
$$

Quantum Lyapunov spectrum distinguishes chaotic and non-chaotic phases

Singular value statistics of two-point time correlators

$$
\begin{aligned}
& G_{a b}^{(\phi)}(t)=\langle\phi| \hat{\chi}_{a}(t) \hat{\chi}_{b}(0)|\phi\rangle \text { as a matrix } \\
& \lambda_{j}(t)=\log \left[\text { singular values of }\left(G_{a b}^{(\phi)}(t)\right)\right]
\end{aligned}
$$

$\langle r\rangle$: average of the adjacent gap ratio $\frac{\min \left(\lambda_{i+1}-\lambda_{i}, \lambda_{i+2}-\lambda_{i+1}\right)}{\max \left(\lambda_{i+1}-\lambda_{i}, \lambda_{i+2}-\lambda_{i+1}\right)}$
Uncorrelated (Poisson): $2 \log 2-1 \approx 0.386$
Correlated: larger (GOE: 0.5307, GUE: 0.5996 etc.) [Atas et al., PRL 2013]

At late time, for two-point correlator singular values, Random matrix behavior \Leftrightarrow chaotic

Summary

$$
\widehat{H}_{\mathrm{SYK}}=\frac{\sqrt{3!}}{N^{3 / 2}} \sum_{1 \leq a<b<c<d \leq N} J_{a b c d} \hat{\chi}_{a} \hat{\chi}_{b} \hat{\chi}_{c} \hat{\chi}_{d}
$$

black hole

maximally chaotic (chaos bound)

| non-gravitational |
| :--- | :--- |
| quantum system |

maximally chaotic (chaos bound)

random matrix behavior of finite-time Lyapunov spectrum
[Classical] Hanada, Shimada and MT, PRE 2018 [1702.02197]
[Quantum] Gharibyan, Hanada, Swingle and MT, JHEP 2019 [1809.01671]
random matrix behavior of two-point correlators

Gharibyan, Hanada, Swingle and MT, 1902.11086

modifications to study chaos / integrable transition, many-body localization

numerical analysis; relation to other scrambling systems

García-García et al., PRL 2018 [1707.02197]
García-García and MT, PRB 2019 [1801.03204]
Lau, Ma, Murugan, and MT, Phys. Lett. B 2019 [1812.04770]

Summary

- The Sachdev-Ye-Kitaev model
- Large- N solvability: conformal symmetry and maximal chaos
- Experimental proposal 1606.02454 (and realization)
- Random matrices (RM) and spectral form factor 1611.04650
- SYK $_{4}+$ SYK $_{2}$: suppression of maximal chaos 1707.02197
- Onset of RM behavior in scrambling systems 1803.08050
- Diffusion, rather than scrambling, controls ramp time scale
- Characterization of chaos in random systems 1702.06935
- Quantum Lyapunov spectrum 1809.01671
- Singular value statistics of two-point correlators 1902.11086

