Characterization of many-body quantum chaos by quantum Lyapunov spectrum and two-point correlators Masaki Tezuka (Kyoto University, tezuka@scphys.kyoto-u.ac.jp) in collaboration with Hrant Gharibyan (Stanford), Masanori Hanada (Southampton), and Brian Swingle (Maryland)

Motivation

Frequently used criteria for characterizing quantum chaos:

Quantum Lyapunov spectrum (arXiv:1809.01671)

Finite-time classical Lyapunov spectrum: obeys RMT statistics for chaos [M. Hanada, H. Shimada, and MT: PRE **97**, 022224 (2018)]

Singular values of $\left(\frac{\partial x_i(t)}{\partial x_i(0)}\right)$ at finite $t: \{s_k(t)\} = \{e^{\lambda_k t}\}$

$$\boldsymbol{L} = \left\{ x_i(t), p_j(0) \right\}_{\text{PB}}^2 = \left(\frac{\partial x_i(t)}{\partial x_j(0)} \right)^2 \to e^{2\lambda_{\text{L}}t} \text{ at large } t$$

OTOC:
$$C_T(t) = \left\langle \left| \left[\widehat{W}(t), \widehat{V}(t=0) \right] \right|^2 \right\rangle = \left\langle \widehat{W}^{\dagger}(t) \widehat{V}^{\dagger}(0) \widehat{W}(t) \widehat{V}(0) \right\rangle + \cdots$$

Quantum Lyapunov spectrum: Define $\widehat{M}_{ab}(t)$ as (anti)commutator of $\widehat{O}_a(t)$ and $\widehat{O}_b(t)$

$$\widehat{L}_{ab}(t) = \sum_{j=1}^{N} \widehat{M}_{ja}(t)^{\dagger} \widehat{M}_{jb}(t)$$

For N imes N matrix $\langle \phi | \hat{L}_{ab}(t) | \phi \rangle$, obtain singular values The Lyapunov spectrum is defined as $\left\{\lambda_k(t) = \frac{\log s_k(t)}{2t}\right\}$

Fixed-*i* unfolding

Divide *i*-th gap $g_i = \lambda_{k+1} - \lambda_k$ by its sample average Δ_i to obtain unfolded gap s_i \Rightarrow gap distribution P(s), adjacent gap ratio $r = \frac{\min(s_{i+1} - s_i, s_{i+2} - s_{i+1})}{r}$ $\max(s_{i+1} - s_i, s_{i+2} - s_{i+1})$

• Fine-grained energy level statistics (described by random matrix theory (RMT)) • Out-of-time-order correlators (OTOC) (exponential Lyapunov growth)

$$\hat{D}_{b}(0)$$

$$lues \{s_{k}(t)\}_{k=1}^{N}$$

$$s_{k}(t) \}$$

SYK model

SYK₄ limit: maximally chaotic

(Fixed-*i*) unfolded level separation

N mod 8 periodicity understood by symmetry of $G_{ab}^{(\phi)}$

• Relation between the two criteria? • Relation to classical chaos?

0.45 0.01

Chaotic
Universal random matrix behavior Non-chaotic \rightarrow Nearly uncorrelated, exp(-s) level separation

XXZ spin chain + random field $G_{ab}^{(\phi)} = \langle \phi | \hat{\sigma}_a^+(t) \hat{\sigma}_b^-(0) | \phi \rangle$ N = 14, W = 0.5 t = 0.1 t = 10 t = 20 t = 100 GOE GUEPoisson -----W = 4N = 14, W = 4 t = 0.1 t = 10 t = 20 t = 100GOE GUE 1.5

Level statistics of $\{\lambda_k\}$: GOE after adequate time

Summary

We have proposed characterization of quantum chaos by

We try to characterize quantum many-body chaos by Generalizing OTOC to define Lyapunov spectrum Considering simpler quantities more accessible to experiment

Quantum Lyapunov spectrum

From analogy to the classical case Lyapunov growth for finite time for finite N

• Two-point correlator matrix

> experimentally more accessible

and have demonstrated their random matrix behavior for the SYK model and the XXZ spin chain + random field.