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Part 1: Stability of chaos in the SYK model
Antonio M. García-García, Bruno Loureiro, Aurelio Romero-Bermúdez, and Masaki Tezuka, 
Phys. Rev. Lett. 120, 241603 (2018) (arXiv:1707.02197)

Various modifications of SYK have been studied
e.g. 
• Supersymmetric SYK [Fu, Gaiotto, Maldacena, and Sachdev 2016]
• Non-random couplings [Witten, 1610.09758]
• Higher-dimensional generalizations [Gu, Qi, and Stanford 2017]

[Davison, Fu, Georges, Gu, Jensen, and Sachdev 2017]
[S. Banerjee and E. Altman 2017]

Addition of new Fermi species can induce a transition to a Fermi liquid
[Banerjee and Altman PRB 95, 134302 (2017)] or MBL transition [S.-K. Jian and H. Yao PRL 119, 206602 (2017)],
additional interaction can induce a metal-insulator transition [C.-M. Jian, Bi, and Xu PRB 96, 115122 (2017)], …

𝐻SYK 𝑞=4 = 

1≤𝑎<𝑏<𝑐<𝑑

𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑



Our motivation and model

Q.: Minimum requirements for chaotic behavior? (→ gravity interpretation?)

Here we study a simple model with analytical + numerical methods

SYK4 SYK2

SYK4 as unperturbed Hamiltonian,
𝐾 controls the strength of SYK2 (one-body random term, solvable) 

𝐽𝑎𝑏𝑐𝑑: average 0, standard deviation 
6𝐽

𝑁 Τ3 2

𝐾𝑎𝑏: average 0, standard deviation 
𝐾

𝑁

Gaussian random couplings

Both terms respect charge parity in complex fermion description
➔ Full numerical exact diagonalization (ED) of 2N/2-1-dimensional matrix, 𝑁 ≲ 34 possible

𝐻 = 

1≤𝑎<𝑏<𝑐<𝑑

𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑 + 𝑖 

1≤𝑎<𝑏

𝑁

𝐾𝑎𝑏 Ƹ𝜒𝑎 Ƹ𝜒𝑏

𝐽 = 1: unit of energy

In this work:
𝑁 ≡ 2 (mod 4)

cf. Nosaka, Rosa, Yoon
Lunkin, Tikhonov, Feigel’man
Yu-Xiang, Ye, Liu

Phys. Rev. Lett. 120, 241603 (2018) (arXiv:1707.02197)



Entropy per fermion
In SYK4, entropy S per fermion at low T→ 0.2324 in large-N limit

Large K (weak SYK4):
S / N almost
independent of N,
and vanishing as T→ 0

𝐽𝑎𝑏𝑐𝑑: average 0, std. dev. 
6

𝑁 Τ3 2

𝐾𝑎𝑏: average 0, std. dev. 
𝐾

𝑁

[Cotler, …, and MT, JHEP 1705, 118 (2017)]

SYK4

𝐻 = 

1≤𝑎<𝑏<𝑐<𝑑

𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑 + 𝑖 

1≤𝑎<𝑏

𝑁

𝐾𝑎𝑏 Ƹ𝜒𝑎 Ƹ𝜒𝑏

Τ𝑘B𝑇 𝐽

Τ
𝑆

𝑘
B
𝑁



Specific heat and large-N analysis

Large N: replica fields + Hubbard-Stratonovich transf.
[cf. Maldacena and Stanford 2016, Sachdev 2015]

Low T: specific heat C(T) → linear in T
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Τ𝜋 6

← SYK4 limit SYK2 limit →

𝑁 = 34, full ED



Out-of-time order correlator (OTOC)

𝑒 Τ𝜆L 𝑡1+𝑡2 2𝑓 𝑡1 − 𝑡2

Deviation from the chaos bound as
SYK2 component is introduced 

Chaos bound [Maldacena,
Shenker, and Stanford 2016]

𝛽 = Τ1 𝑘B𝑇

SYK4 limit

Lyapunov exponent is obtained by solving

𝐾 = 0.2

0.5

1
2

𝐾 = 0
SYKq + κ SYK2

Large-q limit

chaotic

non-chaotic



Small K: RMT-like behavior of energy spectrum

𝑃 𝑠 : level spacing distribution
Ratio of consecutive level spacing 𝐸𝑖+1 − 𝐸𝑖
to the local mean level spacing Δ
(requires unfolding of the spectrum)

SYK4 limit (small K): RMT

(GUE (Gaussian Unitary Ensemble) if 𝑁 ≡ 2 (mod 4))

SYK2 (large K): Poisson (𝑒−𝑆)

Also see: T. Nosaka, D. Rosa, and J. Yoon, JHEP 1809, 041 (2018) (arXiv:1804.09934) for other symmetry cases
cf. A. V. Lunkin, K. S. Tikhonov, and M. V. Feigel’man, 1806.11211; Y. Yu-Xiang, J. Ye, and W. M. Liu, 1809.07577, …

PRL 120, 241603 (2018) (arXiv:1707.02197)

N=30, Central 10 % of eigenvalues



Small K: RMT-like behavior of energy spectrum

Central 10 % of eigenvalues

𝑟 : average adjacent gap ratio
Average of 

min 𝐸𝑖+1−𝐸𝑖,𝐸𝑖+2−𝐸𝑖+1

max 𝐸𝑖+1−𝐸𝑖,𝐸𝑖+2−𝐸𝑖+1

SYK4 (K = 0): RMT
(≈ 0.599 for GUE [Y. Y. Atas et al. PRL 2013])

SYK2 (large K): Poisson (2 log 2 − 1 ≈ 0.386)

Spectral form factor
shows robust ramp reflecting level rigidity

β = 0

K

PRL 120, 241603 (2018) (arXiv:1707.02197)



Summary of Part 1

• Effect of one-body term

𝐻 = 𝐻SYK4 + 𝑖 

1≤𝑎<𝑏

𝑁

𝐾𝑎𝑏 Ƹ𝜒𝑎 Ƹ𝜒𝑏

• No longer maximally chaotic

• Random-matrix like spectra for 
weak perturbation

• Temperature-dependent transition 
to non-chaotic behavior

Phys. Rev. Lett. 120, 241603 (2018) 
(arXiv:1707.02197)

𝐻SYK4 = 

1≤𝑎<𝑏<𝑐<𝑑

𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑

“Stability of chaos in a generalized Sachdev-Ye-Kitaev model”

Interaction with randomness
+ locality

➔many-body localization transition?

Other quantities for characterization of 
chaotic / non-chaotic phases?



2. Short-range SYK4 + SYK2: many-body localization
Antonio M. García-García and MT, arXiv:1801.03204

ሚ𝐽𝑖𝑗𝑘𝑙 𝐷 = ቊ
ሚ𝐽𝑖𝑗𝑘𝑙 𝑙 − 𝑖 < 𝐷

0 𝑙 − 𝑖 ≥ 𝐷
෩𝐾𝑖𝑗 𝑑 = ൝

෩𝐾𝑖𝑗 𝑗 − 𝑖 < 𝑑

0 𝑗 − 𝑖 ≥ 𝑑

Also consider fractional 𝐷 = 𝐷 + ෩𝐷 0 < ෩𝐷 < 1 :

If 𝑙 − 𝑖 = 𝐷 , use non-zero ሚ𝐽𝑖𝑗𝑘𝑙 with probability ෩𝐷, otherwise set to zero

For integer 𝐷, 𝑑

➔We explore the possibility of a metal-insulator transition as 𝐷 is decreased
(following numerical data: for 𝜅 = 1)

ሚ𝐽𝑖𝑗𝑘𝑙, ෩𝐾𝑖𝑗: Gaussian random



Level separation distribution

d = 2: nearest neighbor only

Crossing at
𝐷 ~ 5.6

Gap ratio as a function of D



Tail of level separation distribution

Decay at long distance approaches Poisson 
as interaction (SYK4) range D is decreased

RMT: 𝑒−𝑠
2

Spectral form factor

𝛽 = 10−3

Unfolded spectrum

t1 ramp disappears as D is decreased

𝑁 = 30



Number variance
Logarithmic increase for quantum chaotic case
Linear with slope 𝜒 < 1 for Anderson localization

𝜒 ~ 0.82 for 𝐷 = 5.6

𝜒 ~ 0.27 in 3D cubic lattice,
increase and approach 1 for higher dimensions
[Zharekeshev and Kramer 1995][Schreiber and Grussbach 1996]
[García-García and Cuevas 2007]

Σ2 𝐿 : Variance of number of levels within
𝐿 average level separation

𝑁 = 30



Summary of Part 2: Short-range SYK4 + SYK2:
many-body localization [1801.03204]

ሚ𝐽𝑖𝑗𝑘𝑙 𝐷 = ቊ
ሚ𝐽𝑖𝑗𝑘𝑙 𝑙 − 𝑖 < 𝐷

0 𝑙 − 𝑖 ≥ 𝐷

෩𝐾𝑖𝑗 𝑑 = ൝
෩𝐾𝑖𝑗 𝑗 − 𝑖 < 𝑑

0 𝑗 − 𝑖 ≥ 𝑑Also consider fractional 𝐷 = 𝐷 + ෩𝐷 0 < ෩𝐷 < 1 :

If 𝑙 − 𝑖 = 𝐷 , use non-zero ሚ𝐽𝑖𝑗𝑘𝑙 with probability ෩𝐷, otherwise set to zero

For integer 𝐷, 𝑑

Metal → insulator transition as 𝐷 is decreased (𝑑 = 2 : at 𝐷 ~ 5.6 for 𝜅 = 1)

Gap ratio, level separation tail, spectral form factor, number variance
consistently support a many-body localization



3. Quantum Lyapunov spectrum (cf. OTOC)

𝐻 = 

1≤𝑎<𝑏<𝑐<𝑑≤𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑
For systems of fermions
e.g. Sachdev-Ye-Kitaev (SYK) model?

𝑀𝑎𝑏 𝑡 = Ƹ𝜒𝑎 𝑡 , Ƹ𝜒𝑏 0

𝐿𝑎𝑏 𝑡 =

𝑗=1

𝑁

𝑀𝑗𝑎 𝑡 𝑀𝑗𝑏 𝑡

𝑥 𝑡 , 𝑝 0 PB
2
=

𝜕𝑥 𝑡

𝜕𝑥 0

2

→ 𝑒2𝜆L𝑡

[Norbert Wiener 1938]
[Larkin & Ovchinnikov 1969]

Canonically conjugate variables 𝑥, 𝑝 at different times

Corresponding quantity in quantum systems: for bosonic 𝑉,𝑊 : 𝐶𝑇 𝑡 = − 𝑉 𝑡 , 𝑊 0
2

Out-of-time correlator is included 𝑉 𝑡 𝑊 0 𝑉 𝑡 𝑊 0 etc.

Anticommutator

For matrix 𝜙 𝐿𝑎𝑏 𝑡 𝜙 , obtain singular values 𝑠𝑘 𝑡 𝑘=1
𝑁

and the Lyapunov spectrum is defined as 𝜆𝑘 𝑡 =
log 𝑠𝑘 𝑡

2𝑡
.

Out-of-Time-Ordered Correlation

Other possibilities: see Rozenbaum-Ganeshan-Galitski, 1801.10591; Hallam-Morley-Green: 1806.05204

𝛿𝑥𝑖 𝑡 = 𝑀𝑖𝑗𝛿𝑥𝑗 0

𝑀𝑖𝑗 =
𝛿𝑥𝑖 𝑡

𝛿𝑥𝑗 0
Singular values at finite t: 𝑠𝑘 𝑡 = 𝑒𝜆𝑘𝑡

𝐿 =
𝛿𝑥𝑖 𝑡

𝛿𝑥𝑗 0

2

Our definition: for state 𝜙 (e.g. eigenstate)

Ƹ𝜒𝑎: Majorana fermion, 𝑀𝑎𝑏 𝑡 = 0 = Ƹ𝜒𝑎 , Ƹ𝜒𝑏 = 𝛿𝑎𝑏

Hanada, Shimada, and MT: PRE 97, 022224 (2018)
For classical chaos, 𝜆𝑘 𝑡 obeys RMT statisticsat large t



SYK: dependence on the SYK2 coefficient K

Close to constant between red lines
(20 % and 80 % of the saturated value of 𝜆𝑁𝑡)

Almost linear growth of
log(singular values of L)

Sample- and state-averaged full Lyapunov
spectrum: time dependence

arXiv:1809.01671 with Hrant Gharibyan, Masanori Hanada, and Brian Swingle

𝐻 = 

1≤𝑎<𝑏<𝑐<𝑑

𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑 + 𝑖 

1≤𝑎<𝑏

𝑁

𝐾𝑎𝑏 Ƹ𝜒𝑎 Ƹ𝜒𝑏



Classical KS entropy vs entanglement entropy production

𝑒𝜆𝑡

Coarse-grained entropy
= log(# of cells covering the region)
~ (sum of positive 𝜆 ) 𝑡

Kolmogorov-Sinai entropy ℎKS
= (sum of positive 𝜆 )
= entropy production rate

A B

Initial state: ȁ ۧ𝜓 𝑡 = 0 = ȁ ۧ000…000 in the complex fermion basis

Τ𝑁 2 Ƹ𝑐𝑗 =
𝜒2𝑗−1 + i𝜒2𝑗

2

𝑆EE 𝑡 = −Tr log 𝜌A 𝑡𝜌A 𝑡 = TrB 𝜌 𝑡 ,
𝜌 𝑡 = ȁ ۧ𝜓 𝑡 ȁۦ𝜓 𝑡



𝑒𝜆𝑡

Similar time scale for saturation in SYK model; other models?

Coarse-grained entropy
= log(# of cells covering the region)
~ (sum of positive 𝜆 ) 𝑡

Kolmogorov-Sinai entropy ℎKS
= (sum of positive 𝜆 )
= entropy production rate

Classical KS entropy vs entanglement entropy production



Conjecture on entropy production

SYK4 limit

• 𝜆𝑁 and 𝜆OTOC =
1

2𝑡
log

1

𝑁
σ𝑖=1
𝑁 𝑒2𝜆𝑖𝑡 approach 

each other; difference decreases as Τ1 𝑁

• Same for 𝜆𝑁 and 𝜆1: all exponent → single peak

• All saturate the MSS bound at strong coupling 
(low T) limit

• Growth rate of entanglement entropy ~ ℎKS =
sum of positive (all) 𝜆𝑖

➔ Black holes: not only the fastest scramblers [Sekino and Susskind 2008],
but also fastest entropy generators



Spectral statistics: SYK (fixed-i unfolding:
unfold each gap 𝜆𝑖+1 − 𝜆𝑖 by its average)

Close to SYK4 :
remains GUE even after long time

Strong one-body hopping term:
approaches Poisson



Spectral statistics: SYK
𝑟 : average of the adjacent gap ratio min 𝜖𝑖+1−𝜖𝑖 , 𝜖𝑖+2−𝜖𝑖+1

max 𝜖𝑖+1−𝜖𝑖 , 𝜖𝑖+2−𝜖𝑖+1

Uncorrelated (Poisson):  2 log 2 − 1 ≈ 0.386

Correlated: larger (GOE: 0.5307, GUE: 0.5996 etc. ) [Atas et al., PRL 2013]



Spectral statistics: XXZ + random field

W = 0.5: approaches GUE W = 4: close to Poisson

Quantum Lyapunov spectrum distinguishes chaotic and non-chaotic phases

𝐻 =

𝑖

𝑁

𝑆𝑖 ∙ 𝑆𝑖+1 +

𝑖

𝑁

ℎ𝑖𝑆𝑖
𝑧 ℎ𝑖: uniform distribution [−𝑊,𝑊] 𝑀𝑎𝑏 𝑡 = 𝑆𝑎

+ 𝑡 , 𝑆𝑏
− 0



SYK, largest 3 exponents

Fixed-i unfolded log of singular values of

𝐺𝑎𝑏
𝜙

= 𝜙 𝜓𝑎 𝑡 𝜓𝑏 0 𝜙

Work in progress with Gharibyan, Hanada, Swingle, …

New possibility: characterization of chaos by 
singular value statistics of two-point functions



New possibility: characterization of chaos by 
singular value statistics of two-point functions

Preliminary

XXZ, all non-trivial
exponents

Work in progress

𝐺𝑎𝑏
𝜙

= 𝜙 𝜎+𝑎 𝑡 ෞ𝜎−𝑏 0 𝜙



Quasiperiodic site level modulation in 1D U < 0 
Hubbard model: superfluid-insulator transition
and quench dynamics
MT & A. M. García-García: PRA 82, 043613 (2010)

Dimensional quench dynamics by tDMRG

Remove non-nearest-neighbor hoppings:
quench to 1D from larger effective dimension condensate

1D Hubbard + power-law hopping:
stabilization of long-range order

𝑡𝑙𝑚 =
𝑡

𝑙 − 𝑚 𝜅

MT, A. M. García-García, and M. A. Cazalilla: PRA 90, 053618 (2014)

Higher effective dimension in 1D
lattice with power-law interaction

A. M. Lobos, MT and A. M. García-García:
PRB 88, 134506 (2013)

U = -1

PRA 85, 031602R (2012)

Our other works on localization + interaction



New possibility: characterization of chaos
by two-point functions?  (in progress)

Part 1: effect of one-body term

𝐻 = 𝐻SYK4 + 𝑖 

1≤𝑎<𝑏

𝑁

𝐾𝑎𝑏 Ƹ𝜒𝑎 Ƹ𝜒𝑏

• No longer maximally chaotic
• Random-matrix like spectra for 

weak perturbation
• Temperature-dependent 

transition to non-chaotic behavior
Phys. Rev. Lett. 120, 241603 (2018) 

(arXiv:1707.02197)

Summary of the talk 𝐻SYK4 = 

1≤𝑎<𝑏<𝑐<𝑑

𝑁

𝐽𝑎𝑏𝑐𝑑 Ƹ𝜒𝑎 Ƹ𝜒𝑏 Ƹ𝜒𝑐 Ƹ𝜒𝑑

Part 3: quantum Lyapunov spectrum
• Analogue of time-dependent classical 

Lyapunov spectrum (Hanada-Shimada-MT 
PRE 2018)

• Defined by out-of-time-ordered correlator
• Random-matrix like behavior for SYK4

• One-body term destroys RMT behavior 
after some time

• Comparison to random-field XXZ model 
(many-body localization)

arXiv:1809.01671
Part 2: short-range SYK model

• Many-body localization
arXiv:1801.03204 


