強相関電子系の世界 「量子多体論の最前線」

強相関電子系の世界 ~量子多体論の最前線~

藤本聡

(物理学第一教室 凝縮系理論)

物理学

物質の根源(ひも?)と 時空の起源, それらを支配する基本法則

京都

マクロな数の要素が集まり、 相互作用することによって はじめて発現する現象の探求

物理学

物質の根源(ひも?)と 時空の起源, それらを支配する基本法則

マクロな数の要素が集まり、 相互作用することによって はじめて発現する現象の探求

京都

物性物理学(凝縮系物理学)

物理学

物質の根源(ひも?)と 時空の起源, それらを支配する基本法則

マクロな数の要素が集まり、 相互作用することによって はじめて発現する現象の探求

物性物理学(凝縮系物理学) 超伝導、超流動、磁性、半導体、ナノ量子系、etc 個々の要素の基本法則だけでは理解不能

物理学

物質の根源(ひも?)と 時空の起源, それらを支配する基本法則

マクロな数の要素が集まり、 相互作用することによって はじめて発現する現象の探求

物性物理学(凝縮系物理学) 超伝導、超流動、磁性、半導体、ナノ量子系、etc 個々の要素の基本法則だけでは理解不能

物理学

物質の根源(ひも?)と 時空の起源, それらを支配する基本法則

マクロな数の要素が集まり、 相互作用することによって はじめて発現する現象の探求

物性物理学(凝縮系物理学) 超伝導、超流動、磁性、半導体、ナノ量子系、etc 個々の要素の基本法則だけでは理解不能

アインシュタイン

物理学

物質の根源(ひも?)と 時空の起源, それらを支配する基本法則

マクロな数の要素が集まり、 相互作用することによって はじめて発現する現象の探求

(超伝導発見, 1911年)

物性物理学(凝縮系物理学) 超伝導、超流動、磁性、半導体、ナノ量子系、etc 個々の要素の基本法則だけでは理解不能

アインシュタイン

物理学

物質の根源(ひも?)と 時空の起源, それらを支配する基本法則

マクロな数の要素が集まり、 相互作用することによって はじめて発現する現象の探求

リンオンネス

(超伝導発見, 1911年)

物性物理学(凝縮系物理学) 超伝導、超流動、磁性、半導体、ナノ量子系、etc 個々の要素の基本法則だけでは理解不能

アインシュタイン にも解けなかった 超伝導の謎

物理学

物質の根源(ひも?)と 時空の起源, それらを支配する基本法則

マクロな数の要素が集まり、 相互作用することによって はじめて発現する現象の探求

物性物理学(凝縮系物理学) 超伝導、超流動、磁性、半導体、ナノ量子系、etc 個々の要素の基本法則だけでは理解不能

物理学

物質の根源(ひも?)と 時空の起源, それらを支配する基本法則 マクロな数の要素が集まり、 相互作用することによって はじめて発現する現象の探求

物性物理学(凝縮系物理学) 超伝導、超流動、磁性、半導体、ナノ量子系、etc 個々の要素の基本法則だけでは理解不能

More is different! 多は異なり

P.W. Anderson 1977 ノーベル賞

多様性と普遍性、そして創発性

- ◇ **固体電子** 超伝導、超流動、量子磁性、半導体
- ◇ナノ量子系 量子ドット、カーボンナノチューブ、グラフェン
- ◇ 光格子 冷却原子、BEC

◇固体電子 超伝導、超流動、量子磁性、半導体

◇ナノ量子系 量子ドット、カーボンナノチューブ、グラフェン

◇固体電子 超伝導、超流動、量子磁性、半導体

◇ナノ量子系 量子ドット、カーボンナノチューブ、グラフェン

◇ 光格子

冷却原子、 分野 大きな広がり

◇固体電子 超伝導、超流動、量子磁性、半導体

◇ナノ量子系 量子ドット、カーボンナノチューブ、グラフェン

凝縮系の理論:量子多体論の最前線

~ 強相関電子系の世界を中心として ~

- 1. フェルミ粒子とボース粒子
- 2. 固体中の電子たち:自由な電子
- 3. エキゾチックな量子凝縮相

○超伝導
○トポロジカルな量子系
○ナノ量子系-朝永ラッティンジャー液体

4. レーザー冷却原子:新たな研究舞台

強相関電子系の世界 「量子多体論の最前線」

多粒子系の量子論

フェルミ粒子 & ボーズ粒子

粒子性と波動性

量子化:とびとび

粒子性と波動性

量子化:とびとび

粒子性と波動性

量子化:とびとび

京都

水素原子のエネルギー準位

粒子性と波動性

水素原子のエネルギー準位

これは1個の粒子(波動)の性質

京都

ギモン:多くの粒子が集まると???

◇ボーズ粒子

 $\psi(..., x_i, ..., x_j, ...) = \psi(..., x_j, ..., x_i, ...)$

◇フェルミ粒子

 $\psi(..., x_i, ..., x_j, ...) = -\psi(..., x_j, ..., x_i, ...)$

 $\psi(..., x_i, ..., x_j, ...) = -\psi(..., x_j, ..., x_i, ...)$

◇フェルミ粒子

◇ボーズ粒子

 $\psi(..., x_i, ..., x_j, ...) = \psi(..., x_j, ..., x_i, ...)$

 $\psi(..., x_i, ..., x_i, ...) = -\psi(..., x_i, ..., x_i, ...)$

◇フェルミ粒子

◇ボーズ粒子

 $\psi(..., x_i, ..., x_j, ...) = \psi(..., x_j, ..., x_i, ...)$

 $\psi(..., x_i, ..., x_j, ...) = \psi(..., x_j, ..., x_i, ...)$

$$\psi(..., x_i, ..., x_j, ...) = \psi(..., x_j, ..., x_i, ...)$$

1準位にいくらでも詰まる

1つの準位に1個まで

ボーズ粒子とボーズ・アインシュタイン凝縮

超流動

ヘリウム ⁴He

2Kで粘性ない流体

ボーズ粒子とボーズ・アインシュタイン凝縮

超流動

ヘリウム ⁴He

2Kで粘性ない流体

ボーズ粒子とボーズ・アインシュタイン凝縮

超流動

ヘリウム ⁴He

2Kで粘性ない流体

ボーズ粒子とボーズ・アインシュタイン凝縮

超流動

ヘリウム ⁴He

2Kで粘性ない流体

液体が壁をよじ登る

ボーズ粒子とボーズ・アインシュタイン凝縮

超流動

ヘリウム ⁴He

2Kで粘性ない流体

液体が壁をよじ登る

冷却原子の BE凝縮 Hot topics

2. フェルミ粒子と凍結状態

2. フェルミ粒子と凍結状態

2. フェルミ粒子と凍結状態

2. フェルミ粒子と凍結状態

2. フェルミ粒子と凍結状態

2. フェルミ粒子と凍結状態

強相関電子系の世界「量子多体論の最前線」

電子ガス (フェルミガス)

固体中の電子たち

自由に動く、 でもフェルミ粒子なので...

固体中の電子たち

フェルミガス (自由な電子たち)

京都

京都

凝縮系の理論:量子多体論の最前線

京都

例:超伝導電気抵抗なし

-(1)-

例:超伝導電気抵抗なし

引力相互作用

例:超伝導電気抵抗なし

京都

引力相互作用

例:超伝導電気抵抗なし

京都

引力相互作用

例:超伝導電気抵抗なし

引力相互作用

量子論とフェルミ統計性だけじゃダメ

相互作用の重要性!

多様な物性

京都

磁性:スピン間の相互作用 構造転移:電子・格子の相互作用

超伝導、量子磁性、半導体、ナノ量子現象、etc 基礎物理 最先端テクノロジー

◇ 固体中の電子たち フェルミレベル付近

京都

電子間の相互作用

他の粒子をにらみながら、量子力学的に運動

超伝導、量子磁性、半導体、ナノ量子現象、etc 基礎物理 最先端テクノロジー

◇ 固体中の電子たち フェルミレベル付近

電子間の相互作用

他の粒子をにらみながら、量子力学的に運動

物性理論の中心課題 <u>
典型的な多体問題</u>!

強相関電子系の世界 「量子多体論の最前線」

エキゾチックな量子凝縮相 量子多体効果の醍醐味

強相関電子系の世界 「量子多体論の最前線」

エキゾチックな超伝導

エキゾチックな超伝導

高温超伝導

● 1986年 La₂CuO₄ ホールドープ

銅酸化物セラミックを 金属にしたら

エキゾチックな超伝導

高温超伝導

● 1986年 La₂CuO₄ ホールドープ

銅酸化物セラミックを

金属にしたら

凝縮系の理論:量子多体論の最前線

198

エキゾチックな超伝導

高温超伝導

● 1986年 La₂CuO₄ ホールドープ

銅酸化物セラミックを

金属にしたら

凝縮系の理論:量子多体論の最前線

198

超伝導

超伝導転移温度100K 最高~150K (それまで20Kくらい)

エキゾチックな超伝導

高温超伝導

● 1986年 La₂CuO₄ ホールドープ

銅酸化物セラミックを

金属にしたら

凝縮系の理論:量子多体論の最前線

198

超伝導

超伝導転移温度100K 最高~150K (それまで20Kくらい)

実用化 液体窒素の沸点より高い 77K

層状の構造

京都

Cu中のd電子 電子間の強い相互作用 2次元面内での電子の運動

• :Cu

:0

京都

CuO₂ 2次元ネットワーク

① Cu 中の d電子 電子間の強い相互作用 2次元面内での電子の運動 (2)

Why 銅酸化物? 電子間斥力が通常金属(Al, Pb等)より強いのに?

• : La, Ca

京都

CuO, 2次元ネットワーク

Cu中のd電子 電子間の強い相互作用
 2次元面内での電子の運動

Why 銅酸化物? 電子間斥力が通常金属(Al, Pb等)より強いのに?

○ : O

🔵 : La, Ca

謎解きの

鍵

京都

CuO, 2次元ネットワーク

Cu中のd電子 電子間の強い相互作用
 2 2次元面内での電子の運動

電子相関 + 低次元の量子揺らぎ

3次元と大いに異なる

超伝導メカニズム

京都

磁気相互作用を超伝導に 使いたい。でも、磁石は 壊れないし。。。

超伝導メカニズム

京都

磁気相互作用を超伝導に 使いたい。でも、磁石は 壊れないし。。。

超伝導メカニズム

① 強相関:反強磁性

京都

低次元ゆらぎ

磁気相互作用を超伝導に 使いたい。でも、磁石は 壊れないし。。。

磁気相互作用:強いまま 磁石 ー>不安定に

超伝導メカニズム

① 強相関:反強磁性

磁気相互作用を超伝導に 使いたい。でも、磁石は 壊れないし。。。

磁気相互作用:強いまま 磁石 ー>不安定に

強い引力&高い転移温度

高温超伝導

超伝導メカニズム

Hot !

2008年2月

最近の話題;

鉄が超伝導? メカニズム? もっと高く?

鉄化合物の超伝導

 $LaFeAs(O_{1-x}F_{x})$

東工大 細野教授

現在なお、 最高のT_c ~ 55 K

強相関電子系の世界 「量子多体論の最前線」

トポロジカルな量子系 量子ホール効果 量子スピン・ホール効果 トポロジカル絶縁体、トポロジカル超伝導

強い磁場

トポロジカルな量子系


```
GaAs/AlGaAs
```

トポロジカルな量子系

Hall伝導度
$$\sigma_{xy} = \nu e^2 / h$$

2. 分数量子ホール効果 ν=1/3, 1/5, 1/7, ···

強磁場中での電子相関

 $\sigma_{xy} = \nu e^2 / h$

Hall伝導度

強磁場中での電子相関

トポロジーで保護された表面金属状態

トポロジーで保護された表面金属状態

• ディラック・フェルミオン

• 不純物に散乱されない!

量子スピン・ホール効果(トポロジカル絶縁体)

スピントロニクス 電子スピン↑↓が情報になう

←→ エレクトロニクス ^{(20世紀の} テクノロジー) 電流のon-offが情報になう (ノイズの影響)

- 不純物、乱れで散乱されない
- ロス無く安定した情報伝達
- 元々量子されたスピンが担う
 情報量は甚大
- 強い磁場いらない

量子スピン・ホール効果(トポロジカル絶縁体)

スピントロニクス 電子スピン↑↓が情報になう

京都

←→ エレクトロニクス ^{(20世紀の} テクノロジー) 電流のon-offが情報になう (ノイズの影響)

- 不純物、乱れで散乱されない
- ロス無く安定した情報伝達
- ・元々量子されたスピンが担う
 情報量は甚大
- 強い磁場いらない

21世紀の有望なテクノロジー!!

トポロジカル絶縁体 しかもテクノロジーだけではない! トポロジカル絶縁体では電磁気学も変更される!

マックスウエル

方程式

京都

<u>Axion</u> Electrodynamics 素粒子物理の未発見素粒子

(Wilczek)

トポロジカル絶縁体 しかもテクノロジーだけではない! トポロジカル絶縁体では電磁気学も変更される!

磁場と電場がAxion場を介して結合

トポロジカル絶縁体 しかもテクノロジーだけではない! トポロジカル絶縁体では電磁気学も変更される!

マックスウエル 方程式 Axion Electrodynamics 素粒子物理の未発見素粒子 (Wilczek)

磁場と電場がAxion場を介して結合 磁場(電場)が電場(磁場)を誘起 いわゆる電磁誘導ではない!

トポロジカル絶縁体 しかもテクノロジーだけではない! トポロジカル絶縁体では電磁気学も変更される!

トポロジカル絶縁体 しかもテクノロジーだけではない! トポロジカル絶縁体では電磁気学も変更される!

トポロジカルな量子系 凝縮系の理論:量子多体論の最前線 トポロジカルな超伝導内では1個の電子が2つに"分裂"したような"粒子"が 発生. マヨラナ・フェルミオン ・ ・ ・ 電子 ・ ・ ・ ・ ・ マヨラナ・フェルミオン ・ マヨラナ・フェルミオン ・ マヨラナ・

通常の金属,通常の超伝導体

京都

トポロジカルな超伝導

フェルミオン

しかも1個のマヨラナ・フェルミオンは存在しているとも、 存在しないとも言えない奇妙な状態

京都

粒子=反粒子 素粒子物理 ニュートリノ?

トポロジカルな量子系

数理科学からデバイス応用(21世紀のテクノロジー)まで

トポロジー

(ホモトピー, コホモロジー)

ディラック・フェルミオン

マヨラナ・フェルミオン

モノポール(磁気単極子)

アクシオン

(未発見の素粒子,奇妙な電磁気学)

京都

素粒子物理学とも関係

K-theory (超弦理論)

スピントロニクス 量子デバイス 量子情報,量子コンピューター

トポロジカルな量子系

数理科学からデバイス応用(21世紀のテクノロジー)まで

トポロジー

(ホモトピー, コホモロジー)

ディラック・フェルミオン

マヨラナ・フェルミオン

モノポール(磁気単極子)

アクシオン

(未発見の素粒子,奇妙な電磁気学)

京都

素粒子物理学とも関係

K-theory (超弦理論)

強相関電子系の世界 「量子多体論の最前線」

1次元電子系と 朝永・ラッティンジャー液体と

共形場理論

物性と素粒子が出会うとき

~多様性の中の普遍性~

強相関電子系の世界 「量子多体論の最前線」

1次元電子系と 朝永・ラッティンジャー液体と

共形場理論

物性と素粒子が出会うとき

~多様性の中の普遍性~

素粒子も物性も 境界ないでしょ。

凝縮系理論における朝永先生

京都

フェルミ粒子系の集団運動 1950 Tomonaga-model

凝縮系理論における朝永先生

1次元量子多体論の父

フェルミ粒子系の集団運動 1950 Tomonaga-model

凝縮系理論における朝永先生

京都

1 次元量子多体論の父 フェルミ粒子系の集団運動 1950 Tomonaga-model 朝永の夢:実現

凝縮系理論における朝永先生

1次元量子多体論の父 フェルミ粒子系の集団運動 1950Tomonaga-model 朝永の夢:実現

朝永ラッティンジャー液体

量子多体論

数理的な美しさ 多くの実験

温度をさげていくと?

ざわめき静まる。

 $O \rightarrow -O$ -O

温度をさげていくと?

ざわめき静まる。

凝縮系の理論:量子多体論の最前線

ざわめき静まる。

京都

温度をさげていくと?

超低温では 相関距離は無限大 空間のスケールが消失

時空2次元で長さが消失

個々の物質によらない普遍的な性質 Universality

京都

多様性の中の普遍性

ひものふるえ

1980年代後半 超弦理論

Belavin-Polyakov-Zamolodchikov

2次元共形場の理論 (CFT)

ひものふるえ

1980年代後半 超弦理論

Belavin-Polyakov-Zamolodchikov

2次元共形場の理論 (CFT)

ひものふるえ

1980年代後半 超弦理論

Belavin-Polyakov-Zamolodchikov

2次元共形場の理論 (CFT)

京都

ひものふるえ

1980年代後半 超弦理論

物性物理,統計物理

Belavin-Polyakov-Zamolodchikov

臨界現象

2次元共形場の理論 (CFT)

京都

1次元量子系:朝永・ラッティンジャー液体

ひものふるえ

1980年代後半 超弦理論

物性物理、統計物理

Belavin-Polyakov-Zamolodchikov

2次元共形場の理論 (CFT)

1次元量子系:朝永・ラッティンジャー液体

臨界現象

共形場の理論による解析 素粒子、統計物理、物性の協力

Bridge

50年前の朝永の夢

美しい理論体系

場の理論による定式化

美しい理論体系

50年前の朝永の夢 場の理論による定式化 量子細線 カーボンナノチューブ

量子Hall系, トポロジカル絶縁体のエッジ状態

遷移金属酸化物 有機伝導体 レーザートラップによる光格子

多様性の中の普遍性

実現!!

Cold atoms

~ 凝縮系の新たな研究舞台 ~

物性物理、統計物理、レーザー物理 の紡ぐ新たな世界

~ 凝縮系の新たな研究舞台 ~

物性物理、統計物理、レーザー物理 の紡ぐ新たな世界

量子力学的効果とドップラー効果 原子気体の温度を下げる

6×10⁻⁸ K の低温まで到達可能

冷却された原子集団Rb, Na, Li, H, Ybなど

量子力学的効果とドップラー効果 原子気体の温度を下げる

6×10⁻⁸ K の低温まで到達可能

冷却された原子集団Rb, Na, Li, H, Ybなど 「 京大 高橋研

理想的な量子力学系

京都

光格子(Optical Lattice)

光格子

光の作るポテンシャル

京都

光格子(Optical Lattice)

光格子

光の作るポテンシャル

京都

◇超流動 - 絶縁体転移

◇トポロジカルな量子相

◇人工的なゲージ場("電磁場,

"グルーオン場"")の生成

◇1次元、2次元の相関系 などなど

光格子での実験 (Bloch et.al. 2002) ボーズ・アインシュタイン凝縮体**(BEC)**

京都

光格子での実験 (Bloch et.al. 2002) ボーズ・アインシュタイン凝縮体**(BEC)**

光格子での実験 (Bloch et.al. 2002) ボーズ・アインシュタイン凝縮体**(BEC)**

光格子での実験 (Bloch et.al. 2002) ボーズ・アインシュタイン凝縮体**(BEC)**

◇中性原子のBEC

◇光格子: 量子パラメタ、自由に操れる
◇人工的なゲージ場(中性原子に働く"電磁場",
"グルーオン場"(人工QCD))の生成
などなど

京都

理想的な New 研究舞台 レーザー物理、統計物理、物性物理

◇中性原子のBEC

◇光格子: 量子パラメタ、自由に操れる

◇人工的なゲージ場(中性原子に働く"電磁場", "グルーオン場"(人工QCD))の生成 などなど

理想的な New 研究舞台

京都

レーザー物理、統計物理、物性物理

◇中性原子のBEC

◇光格子: 量子パラメタ、自由に操れる

◇人工的なゲージ場(中性原子に働く"電磁場", "グルーオン場"(人工QCD))の生成 などなど

凝縮系理論として

理想的な New 研究舞台

レーザー物理、統計物理、物性物理 Cold atoms are very hot !

量子論 多体物理

凝縮系物理学

超伝導・超流動 強相関電子系 量子相転移 光格子 ナノ量子系 量子スピン系 など

スライド資料 凝縮系理論HP http://cond.scphys.kyoto-u.ac.jp

凝縮系物理学 量子論 多体物理

<mark>分野の広がり</mark> 超伝導・超流動 強相関電子系 量子相転移 光格子 ナノ量子系 量子スピン系 など

◇豊富な実験、新奇な現象の発見
 ◇量子物理、統計物理の活躍舞台
 基礎物理学の手法

基礎物理の研究舞台 多様性、普遍性、そして創発性

スライド資料 凝縮系理論HP http://cond.scphys.kyoto-u.ac.jp

強相関電子系の世界 「量子多体論の最前線」

Thank you for your attention